Скорость вращения лопастей самолета. Как работает воздушный винт

Назначение и виды авиационных силовых установок.

Силовая установка предназначена для создания силы тяги, необходимой для преодоления лобового сопротивления и обеспечения поступательного движения самолета.

Сила тяги создается установкой, состоящей из двигателя, движителя (винта) и систем, обеспечивающих работу двигательной установки (топливная система, система смазки, охлаждения и т.д.).

В настоящее время в транспортной и военной авиации широкое распространение получили турбореактивные и турбовинтовые двигатели. В спортивной, сельскохозяйственной и различного назначения вспомогательной авиации пока еще применяются силовые установки с поршневыми авиационными двигателями внутреннего сгорания, которые преобразует тепловую энергию сгорающего топлива в энергию вращения воздушного винта..

На самолетах Як-18Т, Як-52 и Як-55 силовая установка состоит из поршневого двигателя М-14П и воздушного винта изменяемого шага В530ТА-Д35.

На многих спортивных самолётах используются двигатели Rotax:

КЛАССИФИКАЦИЯ ВОЗДУШНЫХ ВИНТОВ

Винты классифицируются:

по числу лопастей - двух-, трех-, четырех- и многолопастные;

по материалу изготовления - деревянные, металлические, смешанные;

по направлению вращения (смотреть из кабины самолета по направлению полета) - левого и правого вращения;

по расположению относительно двигателя - тянущие, толкающие;

по форме лопастей - обычные, саблевидные, лопатообразные;

по типам - фиксированные, неизменяемого и изменяемого шага.

Воздушный винт состоит из ступицы, лопастей и укрепляется на валу двигателя с помощью специальной втулки.

Винт неизменяемого шага имеет лопасти, которые не могут вращаться вокруг своих осей. Лопасти со ступицей выполнены как единое целое.

Винт фиксированного шага имеет лопасти, которые устанавливаются на земле перед полетом под любым углом к плоскости вращения и фиксируются. В полете угол установки не меняется.

Винт изменяемого шага имеет лопасти, которые во время работы могут при помощи гидравлического или электрического управления или автоматически вращаться вокруг своих осей и устанавливаться под нужным углом к плоскости вращения.

Рис. 1 Воздушный двухлопастный винт неизменяемого шага

Рис. 2 Воздушный винт В530ТА Д35

По диапазону углов установки лопастей воздушные винты подразделяются:

на обычные, у которых угол установки изменяется от 13 до 50°, они устанавливаются на легкомоторных самолетах;

на флюгируемые - угол установки меняется от 0 до 90°;

на тормозные или реверсные винты, имеют изменяемый угол установки от -15 до +90°, таким винтом создают отрицательную тягу и сокращают длину пробега самолета.

К воздушным винтам предъявляются следующие требования:

винт должен быть прочным и мало весить;

должен обладать весовой, геометрической и аэродинамической симметрией;

должен развивать необходимую тягу при различных эволюциях в полете;

должен работать с наибольшим коэффициентом полезного действия.

На самолетах Як-18Т, Як-52 и Як-55 установлен обычный веслообразный деревянный двухлопастный тянущий винт левого вращения, изменяемого шага с гидравлическим управлением В530ТА-Д35 (Рис. 2).

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВИНТА

Лопасти при вращении создают такие же аэродинамические силы, что и крыло. Геометрические характеристики винта влияют на его аэродинамику.

Рассмотрим геометрические характеристики винта.

Форма лопасти в плане - наиболее распространенная симметричная и саблевидная.


Рис. 3. Формы воздушного винта: а - профиль лопасти, б - формы лопастей в плане

Рис. 4 Диаметр, радиус, геометрический шаг воздушного винта

Рис. 5 Развертка винтовой линии

Сечения рабочей части лопасти имеют крыльевые профили. Профиль лопасти характеризуется хордой, относительной толщиной и относительной кривизной.

Для большей прочности применяют лопасти с переменной толщиной - постепенным утолщением к корню. Хорды сечений лежат не в одной плоскости, так как лопасть выполнена закрученной. Ребро лопасти, рассекающее воздух, называется передней кромкой, а заднее - задней кромкой. Плоскость, перпендикулярная оси вращения винта, называется плоскостью вращения винта (Рис. 3).

Диаметром винта называется диаметр окружности, описываемой концами лопастей при вращении винта. Диаметр современных винтов колеблется от 2 до 5 м. Диаметр винта В530ТА-Д35 равен 2,4 м.

Геометрический шаг винта - это расстояние, которое движущийся поступательно винт должен пройти за один свой полный оборот, если бы он двигался в воздухе как в твердой среде (Рис. 4).

Угол установки лопасти винта - это угол наклона сечения лопасти к плоскости вращения винта (Рис. 5).

Для определения, чему равен шаг винта, представим, что винт движется в цилиндре, радиус г которого равен расстоянию от центра вращения винта до точки Б на лопасти винта. Тогда сечение винта в этой точке опишет на поверхности цилиндра винтовую линию. Развернем отрезок цилиндра, равный шагу винта Н по линии БВ. Получится прямоугольник, в котором винтовая линия превратилась в диагональ этого прямоугольника ЦБ. Эта диагональ наклонена к плоскости вращения винта БЦ под углом . Из прямоугольного треугольника ЦВБ находим, чему равен шаг винта:

(3.1)

Шаг винта будет тем больше, чем больше угол установки лопасти . Винты подразделяются на винты с постоянным шагом вдоль лопасти (все сечения имеют одинаковый шаг), переменным шагом (сечения имеют разный шаг).

Воздушный винт В530ТА-Д35 имеет переменный шаг вдоль лопасти, так как это выгодно с аэродинамической точки зрения. Все сечения лопасти винта набегают на воздушный поток под одинаковым углом атаки.

Если все сечения лопасти винта имеют разный шаг, то за общий шаг винта считается шаг сечения, находящегося на расстоянии от центра вращения, равном 0,75R, где R-радиус винта. Этот шаг называетсяноминальным, а угол установки этого сечения - номинальным углом установки .

Геометрический шаг винта отличается от поступи винта на величину скольжения винта в воздушной среде (см. Рис. 4).

Поступь воздушного винта - это действительное расстояние, на которое движущийся поступательно винт продвигается в воздухе вместе с самолетом за один свой полный оборот. Если скорость самолета выражена в км/ч, а число оборотов винта в секунду, то поступь винта Н п можно найти по формуле

(3.2)

Поступь винта несколько меньше геометрического шага винта. Это объясняется тем, что винт как бы проскальзывает в воздухе при вращении ввиду низкого значения плотности его относительно твердой среды.

Разность между значением геометрического шага и поступью воздушного винта называетсяскольжением винта и определяется по формуле

S = H - H n . (3.3)

СКОРОСТЬ ДВИЖЕНИЯ И УГОЛ АТАКИ ЭЛЕМЕНТА ЛОПАСТИ ВИНТА

К аэродинамическим характеристикам воздушных винтов относятся угол атаки и тяга воздушного винта.

Углом атаки элементов лопасти винта называется угол между хордой элемента и направлением его истинного результирующего движения W (Рис. 6).

Рис. 6 Угол установки и угол атаки лопастей: а - угол атаки элемента лопасти, б - скорости элемента лопасти

Каждый элемент лопасти совершает сложное движение, состоящее из вращательного и поступательного. Вращательная скорость равна

Где n с - обороты двигателя.

Поступательная скорость -это скорость самолета V . Чем дальше элемент лопасти находится от центра вращения воздушного винта, тем больше вращательная скорость U .

При вращении винта каждый элемент лопасти будет создавать аэродинамические силы, величина и направление которых зависят от скорости движения самолета (скорости набегающего потока) и угла атаки.

Рассматривая Рис. 6, а, нетрудно заметить, что:

Когда воздушный винт вращается, а поступательная скорость равна нулю (V =0), то каждый элемент лопасти винта имеет угол атаки, равный углу установки элемента лопасти ;

При поступательном движении воздушного винта угол атаки элемента лопасти винта отличается от угла наклона элемента лопасти винта (становится меньше его);

Угол атаки будет тем больше, чем больше угол установки элемента лопасти винта;

Результирующая скорость вращения элемента лопасти винта W равна геометрической сумме поступательной и вращательной скоростей и находится по правилу прямоугольного треугольника

(3.5)

Чем больше вращательная скорость, тем больше угол атаки элемента лопасти воздушного винта. И наоборот, чем больше поступательная скорость воздушного винта, тем меньше угол атаки элемента лопасти воздушного винта.

В действительности картина получается сложнее. Так как винт засасывает и вращает воздух, отбрасывает его назад, сообщая ему дополнительную скорость v , которую называют скоростью подсасывания. В результате истинная скорость W" будет по величине и направлению отличаться от скорости подсасывания, если их сложить геометрически. Следовательно, и истинный угол атаки " будет отличаться от угла (Рис. 6, б).

Анализируя вышесказанное, можно сделать выводы:

при поступательной скорости V =0 угол атаки максимальный и равен углу установки лопасти винта;

при увеличении поступательной скорости угол атаки уменьшается и становится меньше угла установки;

при большой скорости полета угол атаки лопастей может стать отрицательным;

чем больше скорость вращения воздушного винта, тем больше угол атаки его лопасти;

если скорость полета неизменна и обороты двигателя уменьшаются, то угол атаки уменьшается и может стать отрицательным.

Сделанные выводы объясняют, как изменяется сила тяги винта неизменяемого шага при изменении скорости полета и числа оборотов.

Сила тяги винта возникает в результате действия аэродинамической силы R на элемент лопасти винта при его вращении (Рис.1).

Разложив эту силу на две составляющие, параллельную оси вращения и параллельную плоскости вращения, получим силу ЛР и силу сопротивления вращению Х элемента лопасти винта.

Суммируя силу тяги отдельных элементов лопасти винта и приложив ее к оси вращения, получим силу тяги винта Р .

Тяга винта зависит от диаметра винта Д , числа оборотов в секунду n , плотности воздуха и подсчитывается по формуле (в кгс или Н)

Где - коэффициент тяги винта, учитывающий форму лопасти в плане, форму профиля и угла атаки, определяется экспериментально. Коэффициент тяги воздушного винта самолетов Як-18Т, Як-52 и Як-55 - В530ТА-Д35 равен 1,3.

Таким образом, сила тяги винта прямо пропорциональна своему коэффициенту, плотности воздуха, квадрату числа оборотов винта в секунду и диаметру винта в четвертой степени.

Так как лопасти винта имеют геометрическую симметрию, то величины сил сопротивления и удаления их от оси вращения будут одинаковые.

Сила сопротивления вращению определяется по формуле

(3.7)

Где Сх л - коэффициент сопротивления лопасти, учитывающий ее форму в плане, форму профиля, угол атаки и качество обработки поверхности;

W - результирующая скорость, м/с;

S л - площадь лопасти;

К - количество лопастей.


Рис.1 Аэродинамические силы воздушного винта.

Рис. 2. Режимы работы воздушного винта

Сила сопротивления вращению винта относительно его вращения создает момент сопротивления вращению винта, который уравновешивается крутящим моментом двигателя:

М тр в r в (3.8)

Крутящий момент, создаваемый двигателем, определяется (в кгс-м) по формуле

(3.9)

Где N e -эффективная мощность двигателя.

Рассмотренный режим называется режимом положительной тяги винта, так как эта тяга тянет самолет вперед (Рис. , а). При уменьшении угла атаки лопастей уменьшаются силы Р и Х (уменьшается тяга винта и тормозящий момент). Можно достичь такого режима, когда Р=0 и X = R . Это режим нулевой тяги (Рис. , б).

При дальнейшем уменьшении угла атаки достигается режим, когда винт начнет вращаться не от двигателя, а от действия сил воздушного потока. Такой режим называется самовращением винта или авторотацией (Рис. , в).

При дальнейшем уменьшении угла атаки элементов лопасти винта получим режим, на котором сила сопротивления лопасти винта Х будет направлена в сторону вращения винта, и при этом винт будет иметь отрицательную тягу. На этом режиме винт вращается от набегающего воздушного потока и вращает двигатель. Происходит раскрутка двигателя, этот режим называется режимом ветряка (Рис. , г).

Режимы самовращения и ветряка возможны в горизонтальном полете и на пикировании.

На самолетах Як-52 и Як-55 эти режимы проявляются при выполнении вертикальных фигур вниз на малом шаге лопасти винта. Поэтому рекомендуется при выполнении вертикальных фигур вниз (при разгоне скорости более 250 км/ч) винт затяжелять на 1/3 хода рычага управлением шага винта.

ЗАВИСИМОСТЬ ТЯГИ ВИНТА ОТ СКОРОСТИ ПОЛЕТА.

С увеличением скорости полета углы атаки лопасти винта, неизменяемого шага и фиксированного, быстро уменьшаются, тяга винта падает. Наибольший угол атаки лопасти винта будет на скорости полета, равной нулю, при полных оборотах двигателя.

Соответственно уменьшается тяга воздушного винта до нулевого значения и далее становится отрицательной. Раскручивается вал двигателя. Чтобы предупредить раскрутку винта, уменьшают обороты двигателя. Если двигатель не дросселировать, то может произойти его разрушение.

Зависимость тяги винта В530ТА-Д35 от скорости полета изображена на графике Рис. 7. Для его построения замеряют тягу воздушного винта при разных скоростях. Полученный график называется характеристикой силовой установки по тяге.

Рис. 7 Характеристика силовой установки М-14П по тяге (для Н=500 м) самолетов Як-18Т, Як-52 и Як-55 с воздушным винтом В530ТА-Д35

ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ТЯГУ ВИНТА.

Выясняя зависимость тяги от скорости полета, рассматривалась работа винта на неизменной высоте при постоянной плотности воздуха. Но при полетах на разных высотах плотность воздуха влияет на тягу воздушного винта. С увеличением высоты полета плотность воздуха падает, соответственно пропорционально будет падать и тяга винта (при неизменных оборотах двигателя). Это видно при анализе формулы (3.6).

ТОРМОЗЯЩИЙ МОМЕНТ ВИНТА И КРУТЯЩИЙ МОМЕНТ ДВИГАТЕЛЯ.

Как ранее рассматривалось, тормозящий момент винта противодействует крутящему моменту двигателя.

Для того чтобы винт вращался с постоянными оборотами, необходимо, чтобы тормозящий момент М т, равный произведению
, был равен крутящему моменту двигателя М кр, равному произведению F d ,. т.е. М т =М кр или =F d (Рис. 8).

Рис. 8 Тормозящий момент воздушного винта и крутящий момент двигателя

Если это равенство будет нарушено, то двигатель будет уменьшать обороты или увеличивать.

Увеличение оборотов двигателя приводит к увеличению М кр и наоборот. Новое равновесие устанавливается на новых оборотах двигателя.

МОЩНОСТЬ, ПОТРЕБНАЯ НА ВРАЩЕНИЕ ВОЗДУШНОГО ВИНТА

Эта мощность затрачивается на преодоление сил сопротивления вращению винта.

Формула для определения мощности воздушного винта (в л. с.) имеет вид:

(3.10)

Где - коэффициент мощности, зависящий от формы воздушного винта, числа лопастей, угла установки, формы лопасти в плане, от условия работы воздушного винта (относительной поступи)

Из формулы (3.10) видно, что потребная мощность для вращения воздушного винта зависит от коэффициента мощности, от скорости и высоты полета, оборотов и диаметра воздушного винта.

С увеличением скорости полета уменьшается угол атаки элемента лопасти воздушного винта, количество отбрасываемого назад воздуха и его скорость, поэтому уменьшается и потребная мощность на вращение воздушного винта. С увеличением высоты полета плотность воздуха уменьшается и потребная на вращение воздушного винта мощность также уменьшается.

С увеличением оборотов двигателя увеличивается сопротивление вращению воздушного винта и потребная мощность на вращение воздушного винта увеличивается.

Воздушный винт, вращаемый двигателем, развивает тягу и преодолевает лобовое сопротивление самолета, самолет движется.

Работа, производимая силой тяги воздушного винта за 1 сек. при движении самолета, называется тягой или полезной мощностью воздушного винта.

Тяговая мощность воздушного винта определяется по формуле

(3.11)

Где Р в - тяга, развиваемая воздушным винтом; V-скорость самолета.

С увеличением высоты и скорости полета тяговая мощность воздушного винта уменьшается. При работе воздушного винта, когда самолет не движется, развивается максимальная тяга, но тяговая мощность при этом равна нулю, так как скорость движения равна нулю.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ВОЗДУШНОГО ВИНТА.

ЗАВИСИМОСТЬ КПД ОТ ВЫСОТЫ И СКОРОСТИ ПОЛЕТА

Часть энергии вращения двигателя затрачивается на вращение воздушного винта и направлена на преодоление сопротивления воздуха, закрутку отбрасываемой струи и др. Поэтому полезная секундная работа, или полезная тяговая мощность винта, n b , будет меньше мощности двигателя N e , затраченной на вращение воздушного винта.

Отношение полезной тяговой мощности к потребляемой воздушным винтом мощности (эффективной мощности двигателя) называется коэффициентом полезного действия (кпд) воздушного винта и обозначается . Он определяется по формуле

(3.12)

Рис. 9 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 10 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 11 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

Величина КПД воздушного винта зависит от тех же факторов, что и тяговая мощность воздушного винта.

КПД всегда меньше единицы и достигает у лучших воздушных винтов величины 0,8...0,9.

Np - потребная мощность.

Для уменьшения скорости вращения воздушного винта в двигателе применяется редуктор.

Степень редукции подбирается таким образом, чтобы на номинальном режиме концы лопастей обтекались дозвуковым потоком воздуха.

Рис. 12 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 13 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 14 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

График зависимости располагаемой эффективной мощности от скорости полета для самолетов Як-52 и Як-55 изображен на Рис. 9.

График Рис. 10 называется характеристикой силовой установки по мощности.

При V=0, Np=0; при скорости полета V=300 км/ч, Np= =275 л.с. (для самолета Як-52) и V=320 км/ч, Np=275 л. с. (для самолета Як-55), где Np - потребная мощность.

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 11.

Рис. 15 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 11.

ВИНТЫ ИЗМЕНЯЕМОГО ШАГА

Для устранения недостатков воздушных винтов неизменяемого шага и фиксированного применяется воздушный винт изменяемого шага (ВИШ). Основоположником теории ВИШ является Ветчинкин.

ТРЕБОВАНИЯ К ВИШ:

ВИШ должен устанавливать на всех режимах полета наивыгоднейшие углы атаки лопастей;

Снимать с двигателя номинальную мощность на всем рабочем диапазоне скоростей и высот;

Сохранять максимальное значение коэффициента полезного действия на возможно большем диапазоне скоростей.

Лопасти ВИШ либо управляются специальным механизмом, либо устанавливаются в нужное положение под влиянием сил, действующих на воздушный винт. В первом случае это гидравлические и электрические воздушные винты, во втором - аэродинамические.

Гидравлический винт - воздушный винт, у которого изменение угла установки лопастей производится давлением масла подаваемого в механизм, находящийся во втулке винта.

Электрический винт - воздушный винт, у которого изменение угла установки лопастей производится электродвигателем, соединенным с лопастями механической передачей.

Аэромеханический винт - воздушный винт, у которого изменение угла установки лопастей производится автоматически - аэродинамическими и центробежными силами.

Наибольшее распространение получили гидравлические ВИШ. Автоматическое устройство в винтах изменяемого шага предназначено для сохранения постоянными заданных оборотов воздушного винта (двигателя) путем синхронного изменения угла наклона лопастей при изменении режима полета (скорости, высоты) и называется регулятором постоянства оборотов (РПО).


Рис. 16 Работа воздушного винта изменяемого шага В530ТА-Д35 при разных скоростях полета

РПО совместно с механизмом поворота лопастей изменяет шаг винта (угол наклона лопастей) таким образом, чтобы обороты, заданные летчиком с помощью рычага управления ВИШ, при изменении режима полета оставались неизменными (заданными).

При этом следует помнить, что обороты будут сохраняться до тех пор, пока эффективная мощность на валу двигателя N e будет больше мощности, потребной для вращения воздушного винта при установке лопастей на самый малый угол наклона (малый шаг).

На Рис. 16 показана схема работы ВИШ.

При изменении скорости полета от взлетной до максимальной в горизонтальном полете угол установки лопастей возрастает от своего минимального значения мин до максимального макс (большой шаг). Благодаря этому углы атаки лопасти изменяются мало и сохраняются близкими к наивыгоднейшим.

Работа ВИШ на взлете характерна тем, что на взлете используется вся мощность двигателя - развивается наибольшая тяга. Это возможно при условии, что двигатель развивает максимальные обороты, а каждая часть лопасти винта развивает наибольшую тягу, имея наименьшее сопротивление вращению.

Для этого необходимо, чтобы каждый элемент лопасти воздушного винта работал на углах атаки, близких к критическому, но без срыва воздушного потока. На Рис. 16, а видно, что угол атаки лопасти перед взлетом (V =0) за счет перетекания воздуха со скоростью V немного отличается от угла наклона лопасти на величину ф мин. Угол атаки лопасти соответствует величине максимальной подъемной силы.

Сопротивление вращению достигает в этом случае величины, при которой мощность, расходуемая на вращение винта, и эффективная мощность двигателя сравниваются и обороты будут неизменными. С увеличением скорости угол атаки лопастей воздушного винта уменьшается (Рис. 16, б). Уменьшается сопротивление вращению и воздушный винт как бы облегчается. Обороты двигателя должны возрастать, но РПО удерживает их за счет изменения угла атаки лопастей постоянными. По мере увеличения скорости полета лопасти разворачиваются на больший угол ср .

При выполнении полета на максимальной скорости ВИШ также должен обеспечивать максимальное значение тяги. При полете на максимальной скорости угол наклона лопастей имеет предельное значение р макс (Рис. 16, в). Следовательно, при изменении скорости полета происходит изменение угла атаки лопасти, при уменьшении скорости полета угол атаки увеличивается - винт затяжеляется, при увеличении скорости полета угол атаки уменьшается - винт облегчается. РПО автоматически переводит лопасти винта на соответствующие углы.

При увеличении высоты полета мощность двигателя уменьшается и РПО уменьшает угол наклона лопастей, чтобы облегчить работу двигателя, и наоборот. Следовательно, РПО удерживает обороты двигателя с изменением высоты полета постоянными.

При заходе на посадку воздушный винт устанавливается на малый шаг, что соответствует оборотам взлетного режима. Это дает возможность летчику при выполнении всевозможных маневров на глиссаде посадки получить взлетную мощность двигателя при увеличении оборотов до максимальных.

Изобретение относится к авиации. Винт содержит эллипсоидную ступицу 1 и лопасти, которые имеют передние кромки 3 и задние кромки 4. Каждая лопасть имеет рабочую поверхность 5. Концы лопастей снабжены концевыми гребнями 6, которые размещены со стороны задней кромки, а относительно рабочей поверхности 5 - под углом . Концевые гребни 6 выполнены с криволинейными кромками, имеющими максимальную кривизну вблизи задней кромки 4. Концевой гребень каждой лопасти выполнен плоским и составляет с рабочей поверхностью угол от 90 до 135 o , при этом его высота над рабочей поверхностью составляет от 0,5 до 3,5% от величины диаметра винта. Изобретение направлено на повышение коэффициента полезного действия. 4 з.п.ф-лы, 3 ил.

Изобретение относится к технике воздушных тяговых винтов для самолета и может быть использовано на пассажирских самолетах, на спортивных самолетах, на дельтапланах и на военных самолетах, а так же в качестве рулевого винта на вертолетах. Известные воздушные винты самолетов выполнены в виде двух, трех или в многолопастном исполнении. Все лопасти расположены симметрично и сбалансировано на цилиндрической или эллипсоидной ступице, лобовая часть которой снабжена куком. При вращении винта концы его лопастей формируют диаметр винта. Каждая лопасть винта самолета выполнена в виде плоско-профильной пластины с заостренной законцовкой по типу "ХОФФМАН" или с прямоугольной лопатовидной законцовкой по типу В-530ТА-Д35 . Лопасти винта установлены под определенным углом к плоскости вращения винта, что позволяет рабочей поверхности лопасти как наклонной поверхности перемещать массу воздуха от передней кромки к задней, обеспечивая при этом получение реактивной силы, направленной симметрично от всех лопастей вдоль оси вращения винта, которая обеспечивает перемещение самолета вперед. Недостатком таких известных воздушных винтов для самолета является то, что при быстром вращении винта омывающий его воздух не только смещается наклонными рабочими поверхностями лопастей вдоль оси вращения винта, но за счет создаваемой во вращающемся потоке воздуха центробежной силы часть вращающейся воздушной массы устремляется в радиальном направлении вдоль рабочих поверхностей лопастей и срывается с их концов в окружающее воздушное пространство, перенося в него всю кинетическую энергию, полученную при радиальном движении массы воздуха, и тем самым снижая КПД винта. Наиболее близким техническим решением, выбранным в качестве прототипа, является винтовентилятор СВ-27 самолета АН-70 . Лопасти этого вентилятора имеют саблевидную форму передних и задних кромок. Такая кривизна передних и задних кромок лишь в небольшой степени изменяет направление радиального потока воздуха, созданного центробежной силой. Недостатком такого технического решения является то, что частично измененный саблевидным профилем лопасти радиальный поток воздуха в значительной степени устремляется в окружном направлении, а не вдоль оси вращения винта. Поэтому, так же как и в аналогах , , большая часть воздушного потока, созданного действием центробежной силы, срывается с концов таких саблевидных лопастей и устремляется с большой скоростью, неся в себе и большую кинетическую энергию, в окружающее воздушное пространство, но не выполняя полезной работы и не повышая КПД винта. Задача, на решение которой направлено изобретение, состоит в увеличении коэффициента полезного действия винта самолета. Это достигается тем, что воздушный винт самолета, выполненный в виде сбалансированных и совмещенных на цилиндрической или эллипсоидной поверхности нескольких плоскопрофильных лопастей, имеющих передние и задние кромки, и концевые кромки которых составляют диаметр винта, а одна из двух их поверхностей рабочая, которая установлена под острым углом к плоскости вращения винта, при этом торцевая кромка каждой лопасти отогнута в сторону рабочей поверхности лопасти и составляет с ней угол , имеющий интервал от 90 до 135 o , при этом максимальная высота гребня относительно рабочей поверхности составляет от 0,5 до 3,5% от величины диаметра винта. Торцевая кромка каждой лопасти отогнута к ее рабочей поверхности, например, на угол , равный 90 o . Максимальная высота отогнутой торцевой кромки относительно рабочей поверхности может составлять, например, 1,5% от величины диаметра винта. Радиус отгиба торцевой кромки от рабочей поверхности лопасти может, например, составлять 1-5 единиц от толщины торцевой кромки. На фиг. 1 изображен вид двухлопастного винта самолета вдоль его оси. На фиг. 2 изображено сечение А-А лопасти на фиг. 1. На фиг. 3 изображен вид лопасти по стрелке Б на фиг.2. В статическом состоянии воздушный винт содержит эллипсоидную ступицу 1 и лопасти 2, которые имеют передние кромки 3 и задние кромки 4. Кроме того, каждая лопасть 2 имеет рабочую поверхность 5. Законцовки лопастей 2 отогнуты на угол , с образованием концевых гребней 6. Концевые гребни 6 выполнены с криволинейными торцевыми кромками 7, максимальная кривизна которых смещена к задней кромке 4. Относительно рабочей поверхности 5 кромка 7 гребня 6 поднята на высоту Н. Концевой гребень 6 отогнут от лопасти 2 плавным переходом, имеющим радиус r. Устройство работает следующим образом. Воздушный винт самолета диаметром D при вращении вокруг своей оси перемещает рабочими поверхностями 5 лопастей 2 большую массу воздуха, обеспечивая реактивную силу, перемещающую самолет, при этом рабочие поверхности 5 выполняют функцию наклонных поверхностей. При быстром вращении винта омывающий его лопасти 2 воздух получает и большую величину центробежной силы, которая всегда смещается радиально от оси вращения, вдоль рабочих поверхностей 5. Большая масса воздуха, дошедшая до концевых гребней 6, изменяет свое направление на угол , равный 90 o , и далее подмешивается к основному потоку воздуха перемещаемого вдоль оси винта рабочими поверхностями 5. При этом ядро радиального потока воздуха, смещаемого вдоль рабочей поверхности 5, как более инерционное, смещается к ее задней кромке 4, где профиль торцевой кромки 7 имеет максимальную высоту Н, а это позволяет в большей степени улавливать радиальный поток воздуха, который несет себе и большую кинетическую энергию от радиального потока вдоль поверхностей 5, изменять его направление на 90 o и направлять ее вдоль оси винта, увеличивая тем самым тягу винта и повышая его КПД. Полезность заявляемого устройства воздушного винта самолета заключается в том, что наличие концевых гребней со стороны рабочих поверхностей винта повышает его КПД, а это и тяговые характеристики и быстроходность самолета. Экспериментально-лабораторная проверка модельного варианта двухлопастного винта при скорости его вращения лишь 950 об/мин показала прирост тяги на 6,4 %. Источники информации 1. Журнал "Моделист-конструктор" 8, 1986 г., с.12. 2. Журнал "Моделист-конструктор" 11, 1987 г., с. 15. 3. Журнал "Техника молодежи" 12, 1997 г., с. 1.

Формула изобретения

1. Воздушный винт самолета, выполненный в виде сбалансированных и совмещенных на цилиндрической или эллипсоидной поверхности ступицы нескольких плоскопрофильных лопастей, имеющих передние и задние кромки, и концевые гребни которых составляют диаметр винта, а одна из двух их поверхностей рабочая, которая установлена под острым углом к плоскости вращения винта, отличающийся тем, что концевой гребень каждой лопасти, имеющий криволинейную торцевую кромку, выполнен плоским и составляет с рабочей поверхностью угол , имеющий интервал от 90 до 135 o , при этом максимальная высота гребня относительно рабочей поверхности составляет от 0,5 до 3,5% от величины диаметра винта. 2. Винт по п. 1, отличающийся тем, что концевой гребень каждой лопасти составляет с ее рабочей поверхностью угол , равный 90 o . 3. Винт по п. 1, отличающийся тем, что максимальная высота гребня относительно рабочей поверхности составляет 1,5% от величины диаметра винта. 4. Винт по п. 1, отличающийся тем, что радиус плавного перехода между рабочей поверхностью лопасти и рабочей поверхностью концевого гребня составляет 1-5 единиц от толщины гребня. 5. Винт по п. 1, отличающийся тем, что максимальная кривизна торцевой кромки смещена к задней кромке лопасти.

Похожие патенты:

Изобретение относится к авиационной технике, в частности к вертолетостроению, и может быть использовано при создании летательного аппарата укороченного взлета и посадки, а также для создания систем спасения возвращаемых космических объектов

Группа изобретений относится к устройствам преобразования механической энергии в кинетическую энергию текучей среды. Пропеллер по каждому варианту содержит лопасти с участками прямой и обратной саблевидности, каждая из которых закреплена комлевой частью на ступице приводного вала. В каждом варианте пропеллер характеризуется формой выполнения каждой фронтальной поверхности лопасти. Группа изобретений направлена на упрощение конструкции. 3 н.п. ф-лы, 4 ил.

Изобретение относится к области авиационной техники, а именно к конструкциям лопастей несущего винта и способам их изготовления из слоистых композиционных материалов. Лопасть конструктивно выполнена по безлонжеронной силовой схеме с пенопластовым сердечником по всей длине хорды и работающей обшивкой. Пенопластовый сердечник выполнен из материала с изотропной ячеистой структурой, а обшивка - в виде многослойной оболочки из полимерно-композиционных материалов, охватывающей пенопластовый сердечник. Оболочка выполнена с переменной толщиной контура вдоль радиуса несущего винта и хорды лопасти, а ее внешние слои формируют аэродинамический профиль лопасти. В носовой части лопасти между слоями оболочки размещены секции центровочного груза, поверх внешнего слоя - противоэрозийная оковка. Технологически лопасть изготавливается методом «мокрой» выкладки слоев оболочки и последующим одношаговым «горячим» прессованием совместно с пенопластовым сердечником в пресс-форме. В процессе полимеризации оболочка и пенопластовый сердечник образуют монолитную интегральную структуру, обеспечивающую устойчивые геометрические параметры пера лопасти. Достигается снижение количества применяемой оснастки и стабильность упругомассовых характеристик лопасти. 2 н. и 4 з.п. ф-лы, 11 ил.

Изобретение относится к области винтовых движителей. Законцовка лопасти, выполненная в виде концевого крылышка, представляет собой профиль лопасти, разделенный на верхнюю и нижнюю части. Каждая часть концевого крылышка может иметь фиксированный или управляемый угол атаки, независимый от угла атаки другой части. Достигается уменьшение потерь мощности привода винта, улучшение аэродинамики лопасти, увеличение подъемной или тянущей силы и эффективности винта. 1 ил.

Изобретение относится к авиационной промышленности и может быть использовано при производстве лопастей несущих и рулевых винтов для вертолетов. Способ изготовления безлонжеронной лопасти винта вертолета заключается в том, что из термокомпрессионного пенопласта в соответствии с требуемыми размерами изготавливают заполнитель (1), имеющий форму лопасти. Из листов препрега формируют наружный (3), внутренний (2) и концевой пакеты (4), приклеивают центровочный груз (5) к внутреннему пакету (2), соединяют с последовательным расположением внутренний пакет (2), наружный пакет (3), резиновую накладку (8) и оковку (4). Размещают во внутреннем и наружном пакетах (2) и (3) заполнитель (1) таким образом, что внутренний пакет охватывает заполнитель по части его ширины, а наружный пакет - по всей ширине, и устанавливают концевой пакет (9). Собранное перо лопасти размещают в матрице и осуществляют ее тепловую обработку. При изготовлении пера лопасти может быть изготовлена и установлена продольная перегородка (11) из листов препрега, при этом размещение заполнителя (1) осуществляют частями. Достигается повышение точности наружной геометрии лопасти и сокращение количества технологической оснастки. 2 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к области турбинных двигателей, а именно к способу изготовления металлического усиления для лопатки рабочего колеса турбинного двигателя. Способ последовательно включает этап расположения металлических скоб в формующий инструмент, имеющий матрицу и пуансон, при этом металлические скобы представляют собой металлические секции с прямолинейной формой, согнутые в форму U или V; и этап горячего изостатического прессования металлических скоб, вызывающий интеграцию металлических скоб таким образом, чтобы получить сжатую металлическую часть. Обеспечивается возможность легкого получения металлического усиления без использования больших объемов материалов. 14 з.п. ф-лы, 27 ил.

Изобретение относится к пассивному устройству поглощения энергии для элемента конструкции летательного аппарата и касается лопасти, лопатки или любого другого элемента винта, крыла, стойки или фюзеляжа летательного аппарата. Устройство поглощения кинетической энергии содержит наружную оболочку, выполненную из плетеного композиционного материала с возможностью сохранять целостность после удара, сердцевину из пеноматериала, заключенную в наружную оболочку и заполняющую наружную оболочку, усилительные элементы, интегрированные в сердцевину из пеноматериала. При этом усилительные элементы содержат прерывистые нити, введенные посредством вшивания в сердцевину из пеноматериала. Причем каждая из прерывистых нитей имеет головку в виде L или Т, отбортованную снаружи наружной оболочки. Достигается повышение надежности и целостности конструкции при столкновении с птицами или твердыми предметами. 3 н. и 9 з.п. ф-лы, 13 ил.

Изобретение относится к авиации

Лопастной винт самолета, он же пропеллер или лопаточная машина, которая приводится во вращение с помощью работы двигателя. С помощью винта происходит преобразование крутящего момента от двигателя в тягу.

Воздушный винт выступает движителем в таких летательных аппаратах, как самолеты, цикложиры, автожиры, аэросани, аппараты на воздушной подушке, экранопланы, а также вертолеты с турбовинтовыми и поршневыми двигателями. Для каждой из этих машин винт может выполнять разные функции. В самолетах он используется в качестве несущего винта, который создает тягу, а в вертолетах обеспечивает подъем и руление.

Все винты летательных аппаратов делятся на два основных вида: винты с изменяемым и фиксированным шагом вращения. В зависимости от конструкции самолета винты могут обеспечивать толкающую или тянущую тягу.

При вращении лопасти винта захватывают воздух и производят его отброс в противоположном направлении полета. В передней части винта создается пониженное давление, а позади – зона с высоким давлением. Отбрасываемый воздух приобретает радиальное и окружное направление, за счет этого теряется часть энергии, которая подводится к винту. Сама закрутка воздушного потока снижает обтекаемость аппарата. Сельскохозяйственные самолеты, проводя обработку полей, имеют плохую равномерность рассеивание химикатов из-за потока от пропеллера. Подобная проблема решена в аппаратах, которые имеют соосную схему расположения винтов, в данном случае происходит компенсация с помощью работы заднего винта, который вращается в противоположную сторону. Подобные винты установлены на таких самолетах, как Ан-22 , Ту-142 и Ту-95 .

Технические параметры лопастных винтов

Наиболее весомые характеристики винтов, от которых зависит сила тяги и сам полет, конечно же, шаг винта и его диаметр. Шаг – это расстояние, на которое может переместиться винт за счет ввинчивания в воздух за один полный оборот. До 30-х годов прошлого века использовались винты с постоянным шагом вращения. Только в конце 1930-х годов практически все самолеты оснащались пропеллерами со сменным шагом вращения

Параметры винтов:

    Диаметр окружности винта – это размер, который описывают законцовки лопастей при вращении.

    Поступь винта – реальное расстояние, проходящее винтом за один оборот. Данная характеристика зависит от скорости движения и оборотов.

    Геометрический шаг пропеллера – это расстояние, которое мог бы пройти винт в твердой среде за один оборот. От поступи винта в воздухе отличается скольжением лопастей в воздухе.

    Угол расположения и установки лопастей винта – наклон сечения лопасти к реальной плоскости вращения. За счет наличия крутки лопастей угол поворота замеряется по сечению, в большинстве случаев это 2/3 всей длины лопасти.

Лопасти пропеллера имеют переднюю – режущую – и заднюю кромки. Сечение лопастей имеет профиль крыльевого типа. В профиле лопастей имеется хорда, которая имеет относительную кривизну и толщину. Для повышения прочности лопастей винта используют хорду, которая имеет утолщение к корню пропеллера. Хорды сечения находятся в разных плоскостях, поскольку лопасть изготовлена закрученной.

Шаг винта является основной характеристикой гребного винта, он в первую очередь зависит от угла установки лопастей. Шаг измеряется в единицах пройденного расстояния за один оборот. Чем больший шаг делает винт за один оборот, тем больший объем отбрасывается лопастью. В свою очередь увеличение шага ведет за собой дополнительные нагрузки на силовую установку, соответственно, количество оборотов снижается. Современные летательные аппараты имеют возможность изменять наклон лопастей без остановки двигателя.

Преимущества и недостатки воздушных винтов

Коэффициент полезного действия винтов на современных самолетах достигает показателя в 86%, это делает их востребованными авиастроением. Также нужно отметить, что турбовинтовые аппараты значительно экономнее, чем реактивные самолеты. Все же винты имеют некоторые ограничения как в эксплуатации, так и в конструктивном плане.

Одним из таких ограничений выступает «эффект запирания», который возникает при увеличении диаметра винта или же при добавлении количества оборотов, а тяга в свою очередь остается на том же уровне. Это объясняется тем, что на лопастях пропеллера возникают участки со сверхзвуковыми или околозвуковыми потоками воздуха. Именно этот эффект не позволяет летательным аппаратам с винтами развить скорость выше чем 700 км/час. На данный момент самой быстрой машиной с винтами является отечественная модель дальнего бомбардировщика Ту-95 , который может развить скорость в 920 км/час.

Еще одним недостатком винтов выступает высокая шумность, которая регламентируется мировыми нормами ICAO. Шум от винтов не вписывается в стандарты шумности.

Современные разработки и будущее винтов самолета

Технологии и опыт работы позволяют конструкторам преодолеть некоторые проблемы с шумностью и повысить тягу, миновав ограничения.

Таким образом удалось миновать эффект запирания за счет применения мощного турбовинтового двигателя типа НК-12, который передает мощность на два соосные винта. Их вращение в разные стороны позволило миновать запирание и повысить тягу.

Также используются на винтах тонкие саблевидные лопасти, которые имеют возможность затягивания кризиса. Это позволяет достичь более высоких показателей скорости. Такой тип винтов установлен на самолете типа Ан-70.

На данный момент ведутся разработки по созданию сверхзвуковых винтов. Несмотря на то что проектирование ведется очень долго при немалых денежных вливаниях, достичь положительного результата так и не удалось. Они имеют очень сложную и точную форму, что значительно затрудняет расчеты конструкторов. Некоторые готовые винты сверхзвукового типа показали, что они очень шумные.

Заключение винта в кольцо – импеллер – является перспективным направлением развития, поскольку снижает концевое обтекание лопастей и уровень шума. Также это позволило повысить безопасность. Существуют некоторые самолеты с вентиляторами, которые имеют ту же конструкцию, что и импеллер, но дополнительно оснащаются аппаратом направления воздушного потока. Это значительно повышает эффективность работы винта и двигателя.

До того как были разработаны реактивные двигатели, на всех самолетах стояли пропеллеры, то есть воздушные винты, приводимые в движение двигателями внутреннего сгорания наподобие автомобильных.

Все лопасти воздушного винта имеют в поперечном сечении форму, напоминающую сечение крыла самолета. При вращении пропеллера воздушный поток обтекает переднюю поверхность каждой лопасти быстрее задней. И получается, что перед воздушным винтом давление меньше, чем за ним. Так возникает сила тяги, направленная вперед. А величина этой силы тем больше, чем выше скорость вращения воздушного винта.

(На изображении сверху)Воздушный поток двигается быстрее по передней поверхности лопасти вращающегося пропеллера. Это уменьшает давление воздуха спереди и заставляет самолет двигаться вперед.

Винтовой самолет взлетает в воздух благодаря силе тяги, создаваемой при вращении лопастей воздушного винта.

Концы вращающихся лопастей пропеллера описывают в воздухе спираль. Количество воздуха, которое гонит через себя пропеллер, зависит от размера лопастей и скорости вращения. Дополнительные лопасти и более мощные двигатели могут увеличить полезную работу воздушного винта.

Почему лопасти у воздушного винта имеют закрученную форму

Если бы эти лопасти были плоскими, воздух равномерно бы распределялся по их поверхности, вызывая лишь сопротивление вращению винта. Но когда лопасти искривлены, то воздушный поток, соприкасающийся с их поверхностью, в каждой точке на поверхности лопасти приобретает свое направление. Такая форма лопасти позволяет ей более эффективно рассекать воздух и сохранять самое выгодное соотношение между силой тяги и сопротивлением воздуха.

Воздушные винты с изменяемым углом наклона. Угол, под которым лопасть установлена во втулке несущего винта, называется углом начального конуса. На некоторых самолетах это угол можно менять и таким образом делать максимально полезной работу винта при различных полетных условиях, то есть при взлете, наборе высоты или в крейсерском полете.

0

Винты могут быть тянущими и толкающими. Винты первого типа устанавливаются впереди фюзеляжа и крыла, винты второго типа - в их хвостовой части. Из соображений компоновки преобладающее использование получили тянущие винты. При выборе типа винта приходится учитывать и то, что отлетающие кусочки льда при обледенении самолета могут повредить лопасти винта, расположенного за крылом и фюзеляжем.

На двигателях большой Мощности выгодно бывает установить два винта, вращающихся в разные стороны. Такие винты называют соосными.


Применение соосных винтов позволяет не только спять большую мощность с вала двигателя, но за счет уменьшения потерь на закручивание воздушного потока получить несколько больший к. п. д. по сравнению с одиночным винтом.

Помимо этого, соосные винты, вращаясь в разные стороны, почти не создают реактивного момента, что весьма важно для обеспечения поперечного равновесия самолета.

Наиболее простым типом является винт фиксированного шага (ВФШ), у которого втулка и лопасти являются органически целыми. Материалом для изготовления таких винтов чаще всего служит древесина. Подобные винты в настоящее время применяют только на легких самолетах. Так как у ВФШ установочный угол в полете не изменяется, то подобный винт будет выгодным лишь при полете на весьма ограниченном диапазоне скоростей. В остальных случаях к. п. д. винта невысок.

Винты, у которых угол установки лопастей можно изменять в полете, называются винтами изменяемого шага (ВПШ). Лопасти у таких винтов относительно своих продольных осей автоматически или по воле летчика могут поворачиваться, изменяя угол установки.

Для уменьшения лобового сопротивления при отказе двигателя в полете применяют флюгерные винты изменяемого шага, лопасти которых с помощью специального привода по воле летчика устанавливаются в положение наименьшего сопротивления при остановленном винте. Это достигается при угле установки лопастей 83-85°.

Широкое применение в последние годы получили тормозные или реверсивные винты. Реверсивные винты - это ВПШ с приспособлениями, позволяющими устанавливать лопасти таким образом, что винт при вращении развивает отрицательную тягу. Наличие отрицательной тяги позволяет сократить длину послепосадочного пробега, увеличить угол планирования, повысить маневренность самолета при движении на земле.

Изменение угла установки лопастей у ВПШ может производиться механическим, гидравлическим и электрическим приводами.

Механическим винтом называется такой винт, у которого поворот лопастей на тот или иной угол осуществляется либо пилотом, либо теми силами, которые возникают при работе винта и изменяются при изменении режима работы. Иногда такие винты называются аэромеханическими. Они широко применяются на легких самолетах.

У гидравлических винтов изменяемого шага угол установки лопастей изменяется при помощи гидравлического двигателя под действием давления масла. Давление создается насосом, приводимым во вращение авиационным двигателем. Для питания насоса используется масло, идущее на смазку двигателя (неавтономный винт), а также масло, не входящее в систему смазки двигателя (автономный винт).

Изменение угла установки лопастей может производиться поршневым или шестеренчатым гидравлическим двигателем. Шестеренчатый двигатель может быть один на винт или по одному на каждую лопасть.


В том и в другом случаях вращательное движение гидравлического двигателя с помощью механической передачи осуществляет поворот лопастей.

Передача от подвижного элемента поршневого двигателя на лопасть осуществляется двумя способами:

поршень передает движение обойме - траверсе или поводку, связанному с эксцентрично установленным пальцем на лопасти или стакане, в котором крепится лопасть (рис. 114). Иногда поршень со стаканом лопасти связаны при помощи шатунов;

поршень, двигаясь поступательно, передвигает палец, установленный в винтовом вырезе обоймы. Палец, двигаясь по вырезу в обойме, поворачивает ее. Это движение передается лопастям через коническую зубчатую передачу.

Гидравлические винты могут быть выполнены по обратной, прямой и двойной схемам.

Винтом обратной схемы называется винт, у которого лопасти поворачиваются на малый шаг под действием момента поперечных составляющих центробежных сил лопастей Мцб, а на большой шаг - под действием момента М мех, создаваемого гидравлическим механизмом (рис. 114, а). При прекращении подачи масла или нарушении герметичности системы лопасти винта поворачиваются на минимальный шаг под действием указанных центробежных сил. Как следствие этого, в полете произойдет раскрутка двигателя, т. е. число, оборотов резко повысится свыше максимально допустимого. Пилот Должен будет выключить двигатель во избежание его разрушения.

Винтом прямой схемы называется винт, у которого лопасти поворачиваются на малый шаг под действием момента М мех, создаваемого гидравлическим механизмом, а на большой шаг - под действием разности моментов центробежных сил противовесов М пр центробежных сил лопастей М цб (рис. 114, б). При прекращении подачи масла лопасти такого винта устанавливаются на максимальный (рабочий) шаг. Для винтов прямой схемы раскрутка не опасна.

Вес таких винтов больше веса винтов обратной схемы, но преимуществом его является возможность получения некоторой мощности (до 70% максимальной) при прекращении подачи масла к винту.

Винтом двойной схемы называют такой винт, лопасти которого на малый шаг устанавливают под действием момента М мех создаваемого гидравлическим механизмом, и момента центробежных сил лопастей М цб, а на большой шаг - только при помощи гидравлического механизма (рис. 114, в).

Для предупреждения поворота лопастей винта двойной схемы на малый шаг при отказе системы подачи масла предусмотрен механизм, называемый фиксатором шага. В случае прекращения подачи масла фиксатор шага запирает масло в полости большого шага цилиндровой группы винта, фиксируя лопасти на том шаге, на котором находилась лопасть в момент аварии. Фиксатор шага может быть установлен и на винте обратной схемы, но только при двухканальном подводе масла к винту.

Электрические винты изменяемого шага. Лопасти этих винтов поворачиваются на нужный угол при помощи электродвигателей. На одном винте может быть установлен один электродвигатель или несколько (по числу лопастей); в последнем случае для синхронизации поворота лопасти связывают механически. У некоторых винтов электродвигатель установлен на авиационном двигателе, и движение лопастям передается при помощи дифференциальной зубчатой передачи. Электродвигатели выбираются всегда реверсивные, так как лопасти должны поворачиваться в обе стороны. Питание электрическим током двигатели получают от общей сети самолета. Электродвигатели, приводящие в действие лопасти винта, снабжаются концевыми выключателями, которые отключают двигатели в момент, когда лопасти повернутся на предельный малый или большой шаг.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

2024 logonames.ru. Финансовые советы - Портал полезных знаний.