Биохимический метод изучения генетики человека презентация. Презентация на тему "методы изучения наследственности человека"

Слайд 1

Методы исследований генетики человека.

Преподователь биологии Лысенкова О.В.

Слайд 2

Генеалогический метод.

Разработан в 1865 году Ф. Гальтоном. Задачи метода: Определение наследственного характера признака. Определение типа наследования. Позволяет изучить сцепленное наследование.

Слайд 3

Изучение родословной позволило выяснить, что мутация, вызывающая гемофилию в царских семьях впервые возникла у королевы Виктории в Англии.

Слайд 4

Цитогенетический метод.

Изучение структуры и числа хромосом.

Слайд 5

Хромосомные заболевания.

Синдром Дауна (трисомия по 21 хромосоме)

Слайд 6

Синдром Дауна возникает в результате генетической аномалии. Впервые признаки людей с синдромом Дауна описал в 1866 году английский врач Джон Лэнгдон Даун,чье имя и послужило названием для данного синдрома. Синдром возникает из-за процесса расхождения хромосом при образовании гамет, в результате чего ребенок получает от матери (в 90% случаев) или от отца (в 10% случаев) лишнюю 21-ю хромосому. У большинства больных синдромом Дауна имеется три 21-х хромосомы вместо положенных двух; в 58% случаев аномалия связана с присутствием не целой лишней хромосомы, а ее фрагментов. Из характерных внешних признаков синдрома отмечают плоское лицо с раскосыми глазами, широкими губами, широким плоским языком. Голова круглая, скошенный узкий лоб, ушные раковины уменьшены с приросшей мочкой, глаза с пятнистой радужной оболочкой. Волосы на голове мягкие, редкие, прямые с низкой линией роста на шее. Для людей с синдромом Дауна характерны изменения конечностей – укорочение и расширение кистей и стоп. Неправильный рост зубов, высокое небо, изменения со стороны внутренних органов, особенно пищевого канала и сердца.

Слайд 7

Синдром Патау (трисомия по 13 хромосоме)

Трисомия 13 впервые была описана Томасом Бартолини в 1657 году, но хромосомный характер заболевания был установлен д-ром Клаусом Патау в 1960 году. Болезнь названа на его честь. Синдром Патау был также описан у племен одного тихоокеанского острова. Считалось, что эти случаи были вызваны радиацией от испытаний атомных бомб. В Англии и Уэльсе в течение 2008-09 гг. было диагностировано 172 случая синдрома Патау (трисомия 13), из которых 91% диагнозов был установлен пренатально. Из которых: 111закончились абортами, 14 случаев рождения мертвого ребенка / выкидыша / гибели плода, 30 результатов остались неизвестными и 17 детей были рождены живыми. Более 80% детей с синдромом Патау умирают в течение первого месяца жизни.

Слайд 8

ПОРОКИ РАЗВИТИЯ Нервная система: - отклонения психического и моторного развития; - микроцефалия; - голопрозэнцефалия (нарушение формирования полушарий мозга); - структурные дефекты глаз, в том числе микрофтальмия, аномалия Питерса, катаракта, колоб, дисплазия или отслоение сетчатки, сенсорный нистагм, пробковая потерю зрения и гипоплазия зрительного нерва; - менингомиелоцеле (спинномозговой дефект) Костно-мышечные и кожные: - полидактилия («лишние пальцы») - низко посаженные и деформированные ушные раковины; - выступающая пятка; - деформация ноги, стопа выглядит как качеля; - омфалоцеле (брюшной дефект, пупочная грыжа); - аномальный вид кисти; - перекрытие пальцами большого пальца; - врожденное отсутствие кожи (отсутствуют участки кожи / волос); - волчья пасть, заячья губа (расщепление неба). Урогенитальные: - аномальные гениталии; - дефекты почек. Другие: - пороки сердца (дефект межжелудочковой перегородки); - одна пуповинная артерия.

Слайд 9

Синдром Эдварса(трисомия по 18 хромосоме)

Синдром Эдвардса был назван в честь доктора Джона Эдварда, который в 1960 году описал первые случаи и зафиксировал закономерность развития симптомов. Большинство детей с данной патологией умирают еще на стадии эмбрионального развития, это происходит в 60 % случаев. Распространенность синдрома Эдвардса в среднем составляет 1:3000-1:8000 случаев. Около 80 процентов пострадавших составляют женщины.

Слайд 10

ПОРОКИ РАЗВИТИЯ Низкий вес при рождении независимо от срока беременности; Характерные изменения головы: деформированный маленький череп, маленький лоб и рот, суженные глаза, неправильной формы уши и др.; Микрогнатия (дефекты верхней и нижней челюстей). Форма лица искажена, сформирован неправильный привкус; «Волчья пасть» и «заячья губа». Расщелины встречаются не у всех детей; Множественные пороки развития сердечно-сосудистой, мочевыводящей и пищеварительной систем; Нарушение рефлекса сосания и глотания (возникают большие сложности с кормлением); Пороки развития опорно-двигательного аппарата (косолапость, сращение пальцев на ногах); Практически полное отсутствие физического и умственного развития.

Слайд 11

Трисомии по половым хромосомам.

Слайд 12

Синдром Клайнфельтера - это генетическое заболевание у лиц мужского пола, в основе которого лежит генетически обусловленный дефицит тестостерона. Развивается в результате удвоения в формирующемся плоде одного из важнейших носителей генетической информации (половой хромосомы). В результате таких нарушений в половом наборе генетической информации женские гены преобладают над мужскими генами, что определяет симптомы заболевания. Часто своевременно не удается поставить диагноз, что ведет в дальнейшем к более тяжелому течению заболевания. Заболевание ведет к бесплодию, поэтому из поколения в поколение не передается.

Слайд 13

Близнецовый метод.

В 1876 году Ф. Гальтон предложил использовать метод анализа близнецов для разграничения роли наследственности и среды на развитие различных признаков у человека (ввел понятие «воспитание» и «природа»).

Слайд 14

Виды однояйцовых близнецов.

Слайд 19

Сиамские близнецы.

Сиа́мские близнецы́ - это однояйцовые близнецы, которые не полностью разделились в эмбриональном периоде развития и имеют общие части тела или внутренние органы. Обычно оплодотворенная яйцеклетка делится на шестой день после зачатия. Сиамские близнецы образуются, если яйцеклетка делится очень поздно, через 14-15 дней после оплодотворения. К этому времени клетки зародыша специализируются так, что полное разделение близнецов в утробе матери становится невозможным. Вероятность рождения сиамских близнецов составляет примерно один случай на 200 000 родов. Около половины сиамских близнецов рождаются мёртвыми. Результирующий уровень выживания младенцев 5-25 %. Чаще сиамские близнецы имеют женский пол (70-75 % случаев).

Слайд 20

Возможно, наиболее знаменитой парой близнецов были китайцы Чанг и Энг Банкеры (1811-1874), родившиеся в Сиаме (современный Таиланд). Много лет они гастролировали с цирком под прозвищем «Сиамские близнецы», таким образом закрепив это название за всеми подобными случаями. Чанг и Энг имели сросшиеся хрящи грудной клетки (так называемые близнецы-ксифопаги). В современных условиях их могли бы легко разделить. Они умерли в январе 1874, когда Чанг первым скончался от пневмонии, Энг в это время спал. Обнаружив своего брата мертвым, Энг скончался, хотя он был здоров.

Слайд 23

Медико-генетическое консультирование.

Цель: Предупреждение рождения ребенка с тяжелыми наследственными заболеваниями. Работают во всех крупных городах России. ЭТАПЫ: Изучение родословной. Консультирование: врач прогнозирует вероятность рождения больного ребенка. Официальное заключение, с рекомендациями врача.

Слайд 25

Пренатальная диагностика.

Она использует и ультразвуковую диагностику (УЗИ), и оперативную технику и лабораторные методы(цитогенетические, биохимические, молекулярно-генетические). Пренатальная диагностика имеет исключительно важное значение при медико-генетическом консультировании, поскольку она позволяет перейти от вероятного к однозначному прогнозированию здоровья ребенка в семьях с генетическими осложнениями.

Слайд 27

Литература.

Приходченко Н.Н., Шкурат Т.П. Основы генетики человека: Уч. пос. Ростов н/Д, «Феникс», 1997. – 368 с. 2. http://downsideup.org/ru/chto-takoe-sindrom-dauna 3. http://vse-pro-geny.ru/ru_disease_7_Syndrom-Patau_%D0%A1%D0%B8%D0%BD%D0%B4%D1%80%D0%BE%D0%BC-%D0%9F%D0%B0%D1%82%D0%B0%D1%83.html 4. http://baby-calendar.ru/vrozhdennye-poroki/sindrom-edvardsa/ 5.http://lookmedbook.ru/disease/sindrom-klaynfeltera/male 6.http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%B0%D0%BC%D1%81%D0%BA%D0%B8%D0%B5_%D0%B1%D0%BB%D0%B8%D0%B7%D0%BD%D0%B5%D1%86%D1%8B 7.http://anomalshina.ru/view_post.php?id=25

Внешняя
среда
Геном
XI век –век генетики

Изменчивость

Способность живых организмов изменять
свои свойства и признаки в ходе
онтогенеза.
Заключается в изменении генов,
изменении комбинации генов, а так же в
изменении проявления генов.

Изменчивость
Наследственная
Комбинативная
Мутационная
Ненаследственная
Онтогенетическая
Модификационная
Случайная

Модификационная изменчивость

- Выражается в изменении фенотипа под
влиянием факторов внешней среды. Не
затрагивает генотип и не наследуется.

Норма реакции

Возможный (допустимый) размах фенотипической
изменчивости без изменения генотипа (под
влиянием внешних условий)
Чем шире норма реакции, тем больше влияние среды
и тем меньше влияние генотипа в онтогенезе.
Генотип определяет пределы нормы реакции

Онтогенетическая изменчивость

Реализация нормы реакции организма во
времени, в ходе его индивидуального
развития

Мутационная изменчивость

Мутация –количественные или качественные
изменения генома –
могут возникать как вследствие ошибочной
рекомбинации и репарации, так и при действии на
геном повреждающих факторов (мутагенов)
Мутагенез – генез (возникновение) мутаций
Мутаген – агент, вызывающий мутации

Наследственные болезни – это часть
наследственной изменчивости,
накопившейся за время эволюции человека
Причиной всех наследственных
болезней являются мутации
8

Классификация мутаций

Принцип классификации мутаций
Классификация
В
зависимости
от
причин, Спонтанные, индуцированные
вызывающих мутации
По проявлению в гетерозиготе
Доминантные, рецессивные
По локализации в клетке
Ядерные, цитоплазматические
По отношению к возможности Генеративные, соматические
наследования
По фенотипическому проявлению
По исходу для организма
По характеру изменения генома
Морфологические,физиологические, биохимические,
поведенческие.
Летальные, полулетальные,
нейтральные, положительныt
9
Генные, хромосомные, геномные

Индуцированный мутагенез

Мутации вызванные факторами
физической, химической или
биологической природы, заведомо
превышающие по интенсивности
воздействия допустимые пределы
Основная проблема
возникающая при оценке
влияния экологических
условий
- Дифференциация
спонтанного и
индуцированного мутагенеза
10

Соматические мутации

Приводят к клеточному мозаицизму
(наличие в организме клеток отличающихся по своему
генотипу)
Активируют механизмы канцерогенеза –
злокачественных новообразований;
Стимулируют процессы клеточного старения;
Вызывают нарушение фертильной (репродуктивной)
функции
Не наследуются
11

Эффект Мутаций в клетках эмбриона и плода

Спонтанные аборты и выкидыши (хромосомные
аномалии до 50-70% абортусов в ранние сроки
беременности)
Снижение нормы реакции
(приспособленности) - младенческая
смертность
Повышение частоты врожденных пороков
развития (ВПР)
12

Эффект генеративных мутаций

наследуются

заболевания
приводят к развитию наследственного
предрасположения
могут вызывать гибель клетки
13

«То, над чем бились большие умы,
стало опасней войны и чумы».
В.Шефнер

Классификация мутаций: в зависимости от уровня организации генома

Генные (точечные),
Хромосомные (структурные хромосомные
перестройки),
Геномные (изменения числа хромосом)

Генные мутации

Замены нуклеотидов:
транзиции (А-Г) и (Т-Ц)
трансверсии (А, Г на Т, Ц)
(Т, Ц на А, Г)
Сдвиг рамки считывания:
делеции инцерсии инверсии внутри гена
Динамические мутации

Динамические мутации

Увеличение числа нуклеотидных повторов.
Увеличение числа копий коротких повторяющихся
последовательностей нуклеотидов в ряду поколений.
ГЦЦ при синдроме ломкой X-хромосомы
умеренная или глубокая
умственная отсталость;
большие оттопыренные
ушные раковины,
выступающий лоб и
массивный подбородок;
макроорхизм;
ломкость X хромосомы в
сегменте q28.

Эффекты генных мутаций

Не оказывают никакого влияния на структуру и функцию
соответствующего белка
Ведут к полной потере функции.
Сопровождаются количественными изменениями
соответствующих м-РНК и первичных белковых продуктов
Доминантно-негативные мутации (GAIN-OF-FUNCTION) Ведут к
появлению новой функции. Изменяют свойства белка таким
образом, что он оказывает повреждающее действие на
жизнеспособность или функционирование клеток
В популяции Многократные мутации одного локуса
приводят к появлению множества аллелей одного гена

Генетический полиморфизм –вариации наследственного материала в пределах одного биологического вида (основа разнообразия людей)

Множественный аллелизм
генетический
полиморфизм клинический полиморфизм
Какой -либо ген считается полиморфным если он
встречается в популяции в виде двух аллелей и
более, причем частота встречаемости редкого не
менее 1% (гены группы крови АВО, гены HLA –антигенов I и II)
25% - 10000 генов представлено в виде полиморфных
систем, т.о. число индивидуальных вариаций 210000

Диагностика генных болезней

Объектом исследования является молекула ДНК
ДНК-диагностика возможна на любой стадии онтогенеза
Два варианта ДНК-диагностики:
- прямая – детекция мутаций
- непрямая – идентификация ДНК-маркера, сцепленного с
мутацией или с мутантным геном
Методы детекции мутаций
Полимеразная цепная реакция -ПЦР (1985)
прямое секвенирование -DS
Диагностика с помощью биочипов (2 000)
Для каждой НБ характерен свой тип мутаций,
свой алгоритм ДНК-диагностики

Биохимические методы

Направлены на выявление биохимического дефекта
и помогают диагностировать
генные наследственные
болезни

Патогенез
фермент 2
фермент 1
А
В
С
1. Увеличение количества субстрата (
2. Снижение концентрации продуктов
реакции (В и С)
А
)

Патогенез
фермент 2
фермент 1
А
А1,А2
В
С
производные
субстрата
1. Субстрат или его производные в больших
количествах являются токсичными веществами
2. Недостаточность концентрации продуктов
реакции, которые необходимы для
определенных функций клетки

Фенилкетонурия 12q24.1

(накопление токсических
продукров
предшествеников)

Классификация хромосомных мутаций

Внутрихромосомные
Межхромосомные
Транслокации (t)
Фрагментация
Сбалансированные
Делеция (del)
Несбалансированные
Дупликация (dup)
Робертсоновские трансл-и
Инверсия (inv)
Транспозиция
Изохромосомы
Кольцевые хромосомы
25

Виды хромосомных мутаций

ДЕЛЕЦИЯ
ТРАНСЛОКАЦИЯ

Инверсия и кольцевая хромосома

Геномные мутации

Полиплоидия – кратное гаплоидному увеличение
числа хромосом (3n=69; 4 n=92; 5 n; …)
Гаплоидия – одинарный набор хромосом (1n)
Анеуплоидия (гетероплоидия) – некратное
гаплоидному изменение числа хромосом:
моносомии (2n – 1=45),
трисомии (2n + 1=47),
нуллисомии (2n – 2=44).

Эффекты геномных мутаций:

Избыток генетического материала (трисомия) менее
драматичен, чем его отсутствие (моносомия)
Летальные – нуллисомии;
триплоидия; отсутствие любой аутосомы,
трисомии по крупным аутосомам Обнаруживается у эмбрионов при
неразвивающихся беременностях
Сублетальные - трисомии по аутосомам,
полисомии по половым хромосомам и моносомия
Х. - встречаются в виде синдромов

Синдром Дауна 47,ХХ+21 46,ХХ,t(14;21)

Синдром Вольфа-Хиршхорна (46,ХУ4p-) (46,ХХ4p-)

Цитогенетический метод

метод выявления геномных и
хромосомных мутаций
Возможности метода:
Изучение кариотипа (особенность
строения и число хромосом)
Определение генетического пола
организма
Оценка мутагенеза
Цитогенетика – область генетики,
изучающая цитологические основы
наследственности и изменчивости,
структуру и функции хромосом

Этапы ЦИТОГЕНЕТИЧЕСКОГО МЕТОДА метода:

культивирование клеток человека на питательных средах;
стимуляция митозов фитогемагглютинином (ФГА);
добавление колхицина (разрушает нити веретена деления)
для остановки митоза на стадии метафазы;
Обработка клеток гипотоническим раствором, вследствие
чего хромосомы рассыпаются и лежат свободно;
Окрашивание хромосом, используют различные методы(Qокраска,G-окраска, дифференциальная окраска сестринских
хроматид);
Изучение под микроскопом и фотографирование.
Специальные методы:
Гибридизация in situ: варианты FISH, ДНК-зонды,
Метод CGH (Comparative Genome Hybridization)
Молекулярная диагностика хромосомных болезней

Материально-техническое оснащение для кариотипирования

Нормальный кариотип человека (однородная окраска- рутинная)

Нормальный кариотип человека (G-окраска)

КАРИОТИП – характеристика вида, в которой учтены число, величина и морфологические особенности хромосом

КАРИОТИП – ЭТО “ЛИЦО”
ВИДА

ИДИОГРАММА- схематичное изображение дифференциальной исчерченности хромосом

СЕЛЕКТИВНОЕ ОКРАШИВАНИЕ

конститутивный
гетерохроматин,
активные ядрышкообразующие районы,
центромерные и
теломерные районы.

Показания к проведению метода:

- подозрения на хромосомную болезнь;
- множественные врожденные пороки
развития;
- несколько неблагополучных исходов
беременности (спонтанные аборты,
мертворождения);
- стойкое первичное бесплодие у мужчин и у
женщин при исключении гинекологической
и урологической патологии;
- Лейкозы (дифференциальная диагностика,
оценка эффективности лечения и прогноз)
- пренатальная диагностика посредством
хорионбиопсии амниоцентеза и кордоцентеза;
- оценка мутагенных воздействий.

Экспресс-диагностика позволяет выявить в интерфазных клетках половой Х-хроматин

Схема инактивации Х-хромосомы

Х0
клетка раннего эмбриона
Хм
Равновероятная конденсация любой из двух
Х0
Х-хромосом
Хм
Х0
Хм

Прямое наследование инактивированной хр-мы
В этом клоне активны
только Хм
В этом клоне активны
только Х0

Синдром Шерешевского-Тернера 45,Х

Молекулярно-цитогенетические методы (Метод флюоресцентной гибридизации in situ (FISH))

Метод флюоресцентной гибридизации in situ (FISH)

Метод (Fluorescence in situ hybridization) основан на
гибридизации известной по нуклеотидному составу
ДНК-пробы с участком тестируемой хромосомы и с
последующим выявлением результата гибридизации
по метке – флуоресцентному сигналу в ожидаемом
месте.
Объектом исследования в данном случае являются
особенности нуклеотидного состава конкретной
хромосомы или ее отдельного участка.

Мультицветная FISH и спектральное кариотипирование

Индивидуального
окрашивания каждой
хромосомы.
(выявляют межхромосомные
перестройки)
Применение -онкоцитогенетика

Технология микробиочипов
Институт молекулярной биологии им.В.А.Энгельгардта РАН, Москва

Бланк заключения

Клинико-генеалогический метод наследственных болезней (метод родословных)

Клиникогенеалогический метод
наследственных
болезней
(метод родословных)

Метод позволяет установить:

наследственный характер признака;
тип наследования и пенетрантность
аллеля;
вероятность рождения ребенка с данным
признаком или наследственной
патологией;
характер сцепления генов при
картировании хромосом;
предположить зиготность лиц
родословной;

Аутосомно-доминантное наследование

1.
2.
3.
4.
Заболевание проявляется в каждом поколении
У каждого больного, как правило, поражен один из
родителей;
Болеют в равной степени и мужчины и женщины;
Вероятность наследования 100%, 75% и 50%.

Аутосомно-рецессивное наследование
1. Больные не в каждом поколении
2. У здоровых родителей больной ребенок
3. Болеют в равной степени и мужчины и женщины
4. Возможно наличие близкородственных связей

Наследование, сцепленное с X-хромосомой
(рецессивные гены)
I.
1
2
II.
2
1
3
4
6
5
III.
1
1.
2.
3.
4.
2
3
4
5
6
7
8
Больные не в каждом поколении
У здоровых родителей больной ребенок
Практически все больные мужского пола
Заболевание чаще всего наследуется от здоровой
матери - гетерозиготной носительницы
патологического гена

Наследование, сцепленное с Xхромосомой (доминантные гены)
Тип наследования сходен с Аутосомнодоминантным, за исключением того, что
мужчина передает этот признак всем дочерям

Другие типы наследования

Y-сцепленное наследование (голандрическое)
Больные во всех поколениях
Болеют только мужчины
У больного отца больны все его сыновья
Вероятность наследования 100% у мальчиков
(нарушения сперматогенеза, рост тела, конечностей, зубов)
Митохондриальные болезни
Болезнь передается только по материнской линии
Болеют мальчики и девочки
Больные мужчины не передают болезнь потомству
(атрофия зрительного нерва Лебера, кардиомиопатии,
миоклоническая эпилипсия)

Близнецовый метод

Дизиготных
Монозиготных

Дизиготные близнецы

Конкордантность - процент
сходства группы близнецов
по изучаемому признаку
Дискордантность –
процент различия по изучаемому
признаку

Формула Хольцингера

Н= КМБ% - КДБ%
100% - КДБ%,
Где Н – доля наследственности (коэффициент
наследуемости),
Е – коэффициент среды,
Е=100-Н
КМБ% - конкордантность монозиготных близнецов,
КДБ% - конкордантность дизиготных близнецов.

Пример: Конкордантность монозиготных близнецов
по сахарному диабету равна 65%, т.е. если один
болен сахарным диабетом, то второй заболеет в 65%
случаев. Конкордантность дизиготных близнецов
по данному заболеванию составляет 18%
Н= 65% - 18%
100% - 18%
=57%
Е=100-57%=43%
Таким образом, доля наследственности при сахарном
диабете составляет 57%,
доля среды-43%

Метод
дерматоглифики
и пальмоскопии
(дактилоскопии)

Наследование, сцепленное с X-хромосомой (доминантные гены)
I.
1
II.
1
2
4
3
2
III.
2
1
4
3
5
6
7
8
IV.
1
1.
2.
3.
2
3
4
5
6
Заболеванием страдают лица мужского и женского пола
Больные женщины в среднем передают заболевание половине
своих детей независимо от их пола
Больные отцы никогда не передают заболевание своим
сыновьям, но обязательно передают его всем дочерям

Популяционно-статистический метод

Цели метода:
Изучение генетической структуры
популяции
Изучение закономерностей
распространения патологического признака
в популяции
Анализ встречаемости патологических
генотипов и генов в популяциях различных
местностей.

закон генетического равновесия Харди – Вайнберга

(pA+qа)2 ;
где р - частота встречаемости аллеля А,
q - частота встречаемости аллеля а.
Раскрытие этой формулы дает возможность
рассчитать частоту встречаемости людей с
разным генотипом и в первую очередь
гетерозигот – носителей скрытого
рецессивного аллеля: р2АА + 2рq + q2аа.
p+q= const
p+q=1 или (100%)

Генетика - наука о наследственности и изменчивости

Медицинская генетика (МГ) - наука о роли наследственности в патологии
человека, закономерностях передачи наследственных болезней, их диагностике,
лечении, профилактике.
Клиническая генетика - прикладная МГ, направленная на применение
достижений генетики и МГ для решения клинических проблем пациентов и их
семей.

АКСИОМЫ МЕДИЦИНСКОЙ ГЕНЕТИКИ

1.Наследственные болезни - часть общей наследственной
изменчивости человека
2.Патогенез и клиника любой НБ зависят от генотипа и среды
3.В процессе эволюции генофонд человечества накопил
множество разнообразных мутаций
4.Постоянно меняющаяся среда привела к появлению новых
видов наследственной патологии –экогенетическим болезням
5. Прогресс медицины способствует накоплению вредных
мутаций в обществе, но одновременно увеличивает возможности
диагностики, лечения и профилактики НБ.
6. Расшифровка генома человека знаменует переход всей
медицины на качественно новый уровень, отличительные
особенности которого- профилактическая направленность и
индивидуальный (персонифицированный) подход к пациенту

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Современные методы изучения человека Презентацию подготовила Ученица 8 класса «А» Средней школы №50 Романова Анастасия

2 слайд

3 слайд

Описание слайда:

Аудиометрия Измерение остроты слуха, т.е. чувствительности слухового органа к звукам разной высоты. Заключается главным образом в соблюдении наименьшей силы звука, при которой он еще слышим. Применяют три основных метода: исследование слуха речью, камертонами, аудиометром. Наиболее простой и доступный метод - исследование слуха речью. Его достоинством является возможность провести обследование без специальных приборов, кроме того, этот метод соответствует основной роли слуховой функции - служить средством речевого общения. В обычных условиях слух считается нормальным при восприятии шепотной речи на расстоянии 6-7 метров. При использовании аппаратуры результаты исследования заносятся на специальный бланк: эта аудиограмма дает представление о степени нарушения слуха и о локализации поражения.

4 слайд

Описание слайда:

Биопсия Прижизненное иссечение тканей или органов для исследования под микроскопом. Позволяет с большой точностью определить существующую патологию, а также диагностировать клинически неясные и начальные стадии новообразования, распознавать различные воспалительные явления.

5 слайд

Описание слайда:

Векторкардиография Регистрация электрической активности сердца при помощи специальных аппаратов - векторэлектрокардиоскопов. Позволяет определить изменение величины и направления электрического поля сердца в течение сердечного цикла. Метод представляет собой дальнейшее развитие электрокардиографии. В клинике его применяют для диагностики очаговых поражений миокарда, гипертрофии желудочков сердца (особенно в ранних стадиях) и нарушений ритма. Исследования проводят в положении пациента на спине, накладывая электроды на поверхность грудной клетки. Полученная разность потенциалов регистрируется на экране электронно-лучевой трубки.

6 слайд

Описание слайда:

Катетеризация сердца Введение в полости сердца через периферические вены и артерии специальных катетеров. Применяют для диагностики сложных пороков сердца, уточнения показаний и противопоказаний к хирургическому лечению ряда заболеваний сердца, сосудов и легких, для выявления и оценки сердечной, коронарной и легочной недостаточности. Какой-либо особой подготовки больного катетеризация не требует. Обычно ее осуществляют утром (натощак) в рентгенооперационной (со специальным оснащением) профессионально подготовленные врачи. Методика основана на введении катетеров в отделы сердца через аорту путем пункции правой бедренной артерии. После исследования больные нуждаются в постельном режиме в течение первых суток. Катетеризация позволяет изучить строение и функцию всех отделов сердечно-сосудистой системы. С ее помощью можно определить точное расположение и размеры отдельных полостей сердца и крупных сосудов, выявить дефекты в перегородках сердца, а также обнаружить аномальное отхождение сосудов. Через катетер можно регистрировать кровяное давление, электро- и фоно- кардиограмму, получать пробы крови из отделов сердца и магистральных сосудов. Применяют ее и в лечебных целях для введения лекарственных средств.

7 слайд

Описание слайда:

Мониторное наблюдение Проводится на протяжении нескольких часов или суток с непрерывной регистрацией состояния организма. Контроль осуществляется за частотой пульса и дыхания, величиной артериального и венозного давления, температурой тела, электрокардиограммой и другими показателями. Обычно к мониторному наблюдению прибегают: 1) для немедленного обнаружения состояний, угрожающих жизни больного, и оказания экстренной помощи; 2) для регистрации изменения на протяжении заданного времени, например, для фиксации экстрасистол.

8 слайд

Описание слайда:

Определение глазного давления Цель исследования - выявить патологические изменения тонуса глазного яблока. Как повышение, так и понижение внутриглазного давления может ухудшить функции глаза и привести к тяжелым, необратимым изменениям. Метод служит диагностике ранней глаукомы. Для точного определения внутриглазного давления применяются тонометры и эластотонометры. Исследование проводят в положении больного лежа. После анестезии глаза раствором дикаина врач ставит тонометр на центр роговицы

9 слайд

Описание слайда:

Радиоизотопная диагностика Распознавание патологических изменений в организме человека с помощью радиоактивных соединений. Построена на регистрации и измерении излучений от введенных в организм препаратов. С их помощью изучают работу органов и систем, обмен веществ, скорость движения крови и другие процессы. В радиоизотопной диагностике используют два способа: 1) Больному вводят радиофармацевтический препарат с последующим исследованием его движения или неодинаковой концентрации в органах и тканях. 2) В пробирку с исследуемой кровью добавляют меченые вещества, оценивая их взаимодействие. Это т.п. скрининг-тест для раннего выявления различных заболеваний у неограниченно большого контингента лиц. Показаниями к радиоизотопному исследованию являются заболевания желез внутренней секреции, органов пищеварения, а также костной, сердечнососудистой, кроветворной систем, головного и спинного мозга, легких, органов выделения, лимфатического аппарата. Проводят его не только при подозрении на какую-то патологию или при известном заболевании но и для уточнения степени поражения и оценки эффективности лечения. Противопоказаний к радиоизотопному исследованию нет, существуют лишь некоторые ограничения. Большое значение имеет сопоставление радиоизотопных данных, рентгенологических и ультразвуковых.

10 слайд

Описание слайда:

Рентгенодиагностика Распознавание повреждений и заболеваний различных органов и систем человека на основе получения и анализа их рентгеновского изображения. При этом исследовании пучок рентгеновских лучей, проходя через органы и ткани, поглощается ими в неодинаковой степени и на выходе становится неоднородным. Поэтому, попадая затем на экран либо пленку, обуславливает эффект теневой экспозиции, состоящей из светлых и более темных участков тела. На заре рентгенологии областью ее применения были только органы дыхания и скелет. Сегодня диапазон гораздо шире: желудочно-кишечный, желчный тракт, почки, мочевыводящая система, кровеносные и лимфатические сосуды и другие органы и системы. Основные задачи рентгенодиагностики: установить, имеется ли у пациента какое-либо заболевание и выявить его отличительные признаки, чтобы дифференцировать с другими патологическими процессами; точно определить место и степень распространенности поражения, наличие осложнений; дать оценку общему состоянию больного. Органы и ткани организма отличаются друг от друга плотностью и способностью к рентгеновскому просвечиванию. Так, хорошо, видны кости и суставы, легкие, сердце. При рентгене же желудочно-кишечного тракта, печени, почек, бронхов, сосудов, естественная контрастность которых недостаточна, прибегают к искусственной, специально вводя в организм безвредные рентгеноконтрастные вещества. К ним относятся сульфат бария, йодистые органические соединения. Их принимают внутрь (когда исследуют желудок), вводят в кровеносное русло внутривенно (при урографии почек и мочевых путей) или непосредственно в полость органа (например, при бронхографии). Показания к рентгеновскому исследованию чрезвычайно широки. Выбор оптимального метода определяется диагностической задачей в каждом конкретном случае. Начинают, как правило, с рентгеноскопии или рентгенографии.

11 слайд

Описание слайда:

Реографическое исследование Реография (буквальный Перевод: "рео" - поток, течение и его графическое изображение). Метод исследования кровообращения, основанный на измерении пульсовой волны, вызванной сопротивлением стенки сосуда при пропускании электрического тока. Применяется в диагностике различного рода сосудистых нарушений головного мозга, конечностей, легких, сердца, печени и др. Реография конечностей используется при заболеваниях периферических сосудов, сопровождающихся изменениями их тонуса, эластичности, сужением или полной закупоркой артерий. Запись реограммы производят с симметричных участков обеих конечностей, на которые накладывают электроды одинаковой площади, шириной 1020 мм. Чтобы выяснить приспособительные возможности сосудистой системы, применяют пробы с нитроглицерином, физической нагрузкой, холодом.

12 слайд

Описание слайда:

Термография Метод регистрации инфракрасного излучения от поверхности тела человека. Находит применение в онкологии для дифференциальной диагностики опухолей слюнных и щитовидной желез, заболеваний костей, метастазов рака в кости и мягкие ткани. Физиологической основой термографии является увеличение интенсивности теплового излучения над патологическими очагами в связи с усилением в них кровоснабжения и обменных процессов. Уменьшение кровотока в тканях и органах отражается "угасанием" их теплового поля. Подготовка больного предусматривает исключение в течение десяти дней приема гормональных препаратов, лекарственных средств, влияющих на тонус сосудов, и наложения любых мазей. Термографию органов брюшной полости проводят натощак. Противопоказаний нет, исследование может повторяться многократно. Как самостоятельный диагностический метод применяется редко, обязательно сопоставление с данными клинического и рентгенологического обследования больного.

13 слайд

Описание слайда:

Фонокардиография Метод регистрации звуков (тоны и шумы), возникающих в результате деятельности сердца и применяется для оценки его работы и распознавания нарушений, в том числе пороков клапана. Регистрацию фонокардиограммы производят в специально оборудованной изолированной комнате, где можно создать полную тишину. Врач определяет точки на грудной клетке, с которых затем производится запись при помощи микрофона. Положение больного во время записи горизонтальное. Применение фонокардиографии для динамического наблюдения за состоянием больного повышает достоверность диагностических заключений и дает возможность оценивать эффективность лечения.

14 слайд

Описание слайда:

Электрокардиография Регистрация электрических явлений, возникающих в сердечной мышце при ее возбуждении. Их графическое изображение называется электрокардиограммой. Чтобы записать ЭКГ, на конечности и грудную клетку накладывают электроды, представляющие собой металлические пластинки с гнездами для подключения штепселей провода. По электрокардиограмме определяют частоту и ритмичность сердечной деятельности (продолжительность, длина, форма зубцов и интервалов). Анализируют также некоторые патологические состояния, такие как, утолщение стенок того или иного отделов сердца, нарушение сердечного ритма. Возможна диагностика стенокардии, ишемической болезни сердца, инфаркта миокарда, миокардита, перикардита. Некоторые лекарственные препараты (сердечные гликозиды, мочегонные средства, кордарон и др.) влияют на показания электрокардиограммы, что позволяет индивидуально подбирать медикаменты для лечения пациента. Достоинства метода - безвредность и возможность применения в любых условиях - способствовали его широкому внедрению в практическую медицину.

15 слайд

Описание слайда:

Электроэнцефалография Метод электроэнцефалографического объективного исследования функционального состояния головного мозга, основанный на графической регистрации его биопотенциалов. Наиболее широко используют при решении следующих задач: для установления локализации патологического очага в головном мозге, дифференциального диагноза заболеваний центральной нервной системы, изучения механизмов эпилепсии и выявления ее на ранних стадиях; для определения эффективности проводимой терапии и оценки обратимых и необратимых изменений мозга. Обследуемый во время записи, электроэнцефалографии, сидит, полулежа в специальном удобном кресле или, при тяжелом состоянии, лежит на кушетке с несколько приподнятым изголовьем. Перед исследованием пациента предупреждают о том, что процедура записи безвредна, безболезненна, продолжается не более 20-25 минут, что надо обязательно закрыть глаза и расслабить мышцы. Используют пробы с открыванием и закрыванием глаз, с раздражением светом и звуком. Показания электроэнцефалограммы при любом заболевании должны быть соотнесены с данными клинического обследования.

16 слайд

Описание слайда:

Ядерный магнитный резонанс Избирательное поглощение веществом электромагнитного излучения. С помощью этого метода возможно изучение строения различных органов. Существенно снижает вредное воздействие на организм низкая энергия используемых излучений. Достоинством метода является его высокая чувствительность в изображении мягких тканей, а также высокая разрешающая способность, вплоть до долей миллиметра. Позволяет получить изображение исследуемого органа в любом сечении и реконструировать их объемные изображения.

Методы изучения наследственности человека

Преподаватель Смирнова З. М.


Актуальность темы

Успешное применение методов медицинской генетики позволяет быстро и эффективно диагностировать различные формы наследственной патологии человека.


Методы изучения наследственности человека

Исследование генетики человека связано с трудностями, причины которых заключаются в

  • невозможности экспериментального скрещивания;
  • медленной сменой поколений;
  • малым количеством потомков в семье;
  • сложный кариотип;
  • большое число групп сцепления.

Несмотря на все эти затруднения, генетика человека успешно развивается, благодаря следующим методам

- Генеалогический; - Популяционный;

- Цитогенетический; - Близнецовый;

- Биохимический; - Дерматоглифики.

- ДНК-диагностики;


Генеалогический или

метод составления родословных

Предложен в конце XIX века Ф. Гальтоном.

Метод позволяет выявить

  • является ли данный признак наследственным

(по проявлению его у родственников);

  • тип наследования заболевания (доминантный, рецессивный, аутосомный или сцепленный с полом),
  • гомо- и гетерозиготность различных членов семьи;
  • пенетрантность гена (частота его проявления);
  • вероятность рождения ребенка с наследственной патологией (генетический риск).

Этапы генеалогического метода

  • Сбор данных о всех родственниках обследуемого (анамнез):

- должны быть собраны данные не менее чем о трех поколениях;

- сбор сведений и построение родословной начинается с пробанда – лица, с которого начинается исследование семьи.

2. Построение родословной:

- с помощью стандартных символов делают графическое изображение;

- каждое поколение нумеруется римскими цифрами

слева.

3. Анализ родословной и выводы


Символы,

используемые при составлении родословных


Классификация типов наследования признаков при моногенном наследовании

Типы наследования

аутосомное

сцепленное с полом

Х- сцепленное

У- сцепленное

доминантное

рецессивное

доминантное

рецессивное


Анализ родословной

  • Первая задача при анализе родословной – установление наследственного характера признака.
  • Если в родословной встречается один и тот же признак (болезнь) несколько раз, то можно думать о его наследственной природе.
  • После обнаружения наследственного характера признака необходимо установить тип наследования. Для этого используются принципы генетического анализа и различные статистические методы обработки данных многих родословных.

Основные признаки аутосомно – доминантного типа наследования (А-Д тип)

  • Больные в каждом поколении;
  • Больной ребенок у больных родителей;
  • Проявление признака (болезни) наблюдается по вертикали и по горизонтали;
  • Вероятность наследования 100 %, если один родитель гомозиготен;
  • 75 %, если оба родителя гетерозиготны;
  • 50 %, если один родитель гетерозиготен.

А а

А а

А а Х аа

А а

А а аа

А а

1 2 3 4 5 6 7 8

25% здоровые

75% больные

50% 50%

больные здоровые

1 2 3 4 5 6 7 8 9


Основные признаки аутосомно –рецессивного наследования (А-Р тип)

  • Больные не в каждом поколении;
  • Больной ребенок (гомозигота) рождается у здоровых родителей (гетерозигот);
  • Болеют в равной степени мужчины и женщины;
  • Проявление признака (болезни) наблюдается по горизонтали;
  • Вероятность наследования 25 % (если оба родителя гетерозиготны).

А а Х А а

А а А а

F 1

АА А а А а аа

больной


Х-сцепленный доминантный тип наследования

  • Больные встречаются в каждом поколении;
  • Поражаются и мужчины, и женщины, но больных женщин в 2 раза больше, чем мужчин;
  • Больные женщины в среднем передают патологический аллель

50% сыновей и 50% дочерей;

  • Больной мужчина передает патологический аллель всем дочерям и не передает сыновьям, поскольку последние получают от отца Y-

хромосому.

Примеры: рахит, резистентный к витамину Д

Темная эмаль зубов


Основные признаки Х-сцепленного рецессивного типа наследования:

  • Больные появляются не в каждом поколении;
  • Больной ребенок рождается у

здоровых родителей;

  • Болеют преимущественно мужчины;
  • Вероятность наследования:

у 25 % всех детей, в том числе

у 50 % мальчиков;

  • Так наследуются у челов ека гемофилия, дальтонизм и др.

Наследование гемофилии в царских домах Европы

Королева Виктория

Англия

Алиса

Леопольд

Беатриса

Альфонсо-Морис XIII

Испания

Виктория- Евгения

Алек-сандра

Нико-лай II

Трематан Альфонсо

Испания

Вольдемар Генри

Прусия


Х- сцепленный рецессивный тип наследования

  • Х-сцепленный рецессивный признак, у женского пола проявляется только при получении ими соответствующего аллеля от обоих родителей ( X h X h ) .
  • У мужчин – X h Y он развивается при получении рецессивного аллеля от матери.
  • Матери передают рецессивный аллель потомкам любого пола, а отцы – только «дочерям»

X h Y

X H X H

X H X h

X H Y

X H X H ; X H Y; X h X H ; X h Y

F 1

Доминантный ген (норма)

Доминантный ген

Х- сцепленный рецессивный ген

Здоровые

Носители

X h Y

X H Y;

X H Y ;

X h X H ;

X h X H ;

X h X H ;

X H X H

X H Y;


Основные признаки при У- сцепленном (голандрическом) наследовании

  • Больные во всех поколениях;
  • Болеют только мужчины;
  • У больного отца больны все его сыновья;
  • Вероятность наследования у мальчиков 100 %.
  • Так наследуются у человека некоторые формы ихтиоза, обволошенность наружных слуховых проходов

(гипертрихоз) некоторые формы синдактилии,

перепонка между пальцами ног и др.

XX x XY Z


Признаки цитоплазматической

(митохондриальной) наследственности

  • Признак передается потомкам только от матери;
  • Мать, несущая признак, передает его всему по­томству;
  • Признак одинаково часто встречается у представите­лей обоих полов.

Задание

Определить тип наследования


Цитогенетический метод

Проводится при подозрении на хромосомные нарушения.

Суть метода

заключается в микроскопическом изучении кариотипа (особенность строения и число хромосом), путем записи кариограммы.

Обычно хромосомы в клетках наблюдают во время митоза на стадии метафазной пластинки.

Объектом исследования служат

  • клетки костного мозга,
  • лимфоциты периферической крови,
  • различные клетки эмбрионов.

Показания для цитогенетического обследования:

  • множественные пороки развития (пороки рзвития головного мозга, опорно-двигательной системы, сердца и мочеполовой системы);
  • умственная отсталость в сочетании с нарушениями физического развития;
  • первичное бесплодие у мужчин и у женщин;
  • привычное невынашивание беременности, особенно на ранних стадиях;
  • нарушение полового развития;
  • небольшая масса ребенка, рожденного при доношенной беременности.

Этапы исследования

  • Культивирование клеток человека (чаще лимфоцитов) на искусственных питательных средах;

2) Стимуляция митоза фитогемагглютинином (ФГА);

3) Добавление колхицина (разрушает нити веретена деления) для остановки митоза на стадии метафазы;

4) обработка клеток гипотоническим раствором, вследствие чего хромосомы «рассыпаются» и лежат свободно;

5) простое и дифференциальное окрашивание хромосом;

6) изучение хромосом под микроскопом и фотографирование;

7) вырезание отдельных хромосом и построение идиограммы.

Центрифуга

Гипотонический раствор

Фиксация

Эритроциты

Отделение лейкоцитов

Окрашивание


Метод позволяет выявлять геномные и хромосомные мутации

  • Кариотип больного обозначают следующим образом:
  • количество хромосом,
  • набор гетерохромосом,
  • номер хромосомы,
  • избыток (+) или нехватка (-) генетического материала.
  • Например, болезнь Дауна у мальчика: 47,XY,21 + ;
  • синдром кошачьего крика у девочки: 46,ХХ,5р-.

Цитогенетический метод

Исследование полового хроматина

  • Ядра всех соматических клеток человека имеют 23 пары хромосом.

В норме у женщин кариотип – 46,ХХ, у мужчин – 46, XY.

  • Из них 22 пары – аутосомы «работают» только попарно.
  • Половые же хромосомы работают в единственном числе.
  • Из двух Х-хромосом женщины одна полностью

инактивируется и находится в ядре в конденсированном

состоянии, в виде глыбок (М. Барр и Л. Бертрам в 1949г).

  • Эти глыбки получили название «половой хроматин», «Х- хроматин» или «тельца Барра» – небольшое образование по краям ядра.

  • В норме у женщин 10-30% клеточных ядер имеют тельце Барра,
  • у мужчин в норме отсутствуют.
  • Чаще всего для исследования берется соскоб эпителия с

внутренней поверхности щеки (буккальный соскоб).

  • Изменение количества полового хроматина

свидетельствует об изменении количества половых хромосом.

  • Определение полового хроматина используется как экспресс-метод при пренатальном и постнатальном определении пола и диагностике хромосомных болезней

Показания к исследованию полового хроматина

  • наличие клинических признаков синдрома Шерешевского-

Тернера и синдрома Клайнфельтера;

  • наличие признаков гермафродитизма;
  • низкий рост у девочек, женщин (Х-хроматин);
  • аменорея первичная и вторичная;
  • высокий рост у мужчин (Y- и Х-хроматин).

Глыбки Х- хроматина

у женщин – норма: 46(ХХ)

у мужчин – синдром Клайнфельтера: 47(ХХУ)

Х- хроматин отсутствует

у мужчин – норма: 46(ХУ)

у женщин – синдром Шерешевского-Тернера: 45(ХО)


Глыбки Х-хроматина (тельца Барра)

в ядрах соматических клеток человека

Нормальный мужчина (XY)

или женщина с синдромом Шерешевского-Тернера (ХО)

Нормальная женщина (ХХ)

или мужчина с синдромом Клайнфельтера (ХХY)

Женщина с трисомией Х (ХХХ)

или мужчина с синдромом Клайнфельтера (ХХХY)

Женщина с полисомией Х (ХХХХ)

или мужчина с синдромом Клайнфельтера (ХХХХY)


FISH – флюоресцентная гибридизация –

цитогенетический метод, который применяют для определения положения специфической последовательности ДНК на метафазных хромосомах или в интерфазных ядрах in situ.

  • Денатурация хромосомной ДНК и гибридизация с флуоресцентным зондом.
  • Для определения участков хромосом, с которыми связались

флюоресцентные зонды, используют флюоресцентные микроскопы.


FISH – флюоресцентная гибридизация in situ (Fluorescence in situ hybridization)

готовят ДНК-зонды – определенные по нуклеотидному составу

фрагменты ДНК, помеченные флюоресцирующим красителем,

ДНК-зонд, находит в исследуемой хромосоме комплементарный

участок ДНК и присоединяется к нему;

место присоединения ДНК-зонда определяется по специфическому

свечению при микроскопировании гистологических препаратов,

объектом микроскопирования могут быть метафазные хромосомы и

хроматин ядер неделящихся клеток (интерфазные хромосомы);

С помощью метода FISH можно определять локализацию генов в

хромосомах и все хромосомные аберрации.

ДНК-зонд

Флуоресцентная метка

Участок хромосомы, комплементарный зонду

FISH исследования интерфазных и метафазных хромосом с помощью ДНК-зондов


Биохимические методы

  • Используются для:

- диагностики моногенных наследственных заболеваний с нарушением обмена веществ (энзимопатии);

- диагностики гетерозиготных состояний у взрослых.

  • Биохимические методы позволяют выявить аномальные белки-ферменты или промежуточные продукты обмена, свидетельствующие о наличии болезни.

Показания для биохимического исследования:

  • умственная отсталость, психические нарушения;
  • нарушение физического развития – остановка роста, чрезмерное отложение жира или кахексия;
  • судороги, рвота, повышенный или пониженный тонус мышц, желтуха;
  • непереносимость отдельных пищевых продуктов и лекарственных препаратов, нарушение пищеварения;
  • специфический запах мочи и пота у ребенка.

Биохимические методы

Объектами биохимической диагностики являются: кровь, моча, пунктаты костного мозга, амниотическая жидкость, сперма, пот, кал и др., с целью определения в биологических жидкостях активности ферментов

Биохимическая диагностика:

первичная уточняющая

Цель – исключение здоровых Цель – уточнение индивидов из дальнейшего диагноза заболевания.

обследования.

Используется Используется

массовый скрининг селективный скрининг


Массовая диагностика

  • Массовые просеивающие программы применяют для диагностики у новорожденных таких заболеваний как
  • фенилкетонурия,
  • врожденный гипотериоз,
  • муковисцедоз,
  • галактоземия.

Например, для диагностики фенилкетонурии кровь новорожденных берут на 3-5 день после рождения. Капли крови помещают на хроматографическую или фильтровальную бумагу и пересылают в лабораторию для определения фенилаланина.

Для определения врожденного гипотиреоза в крови ребенка на 3 день жизни определяют уровень тироксина.


Селективная диагностика

Селективные диагностические программы предусматривают проверку биохимических аномалий обмена у пациентов с подозрением на генные наследственные болезни.

В селективных программах обычно используются более точные методы.

Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать наследственные нарушения обмена аминокислот и мукополисахаридов.

С помощью электрофореза гемоглобинов диагностируется вся группа гемоглобинопатий.

Жидкостная хроматография, масс-спектрометрия и др. позволяют идентифицировать любые метаболиты, специфические для конкретной наследственной болезни.


Биохимические методы

в пренатальной диагностике

Широкое применение нашел биохимический метод в пренатальной диагностике врожденных пороков развития.

Биохимические методы включают определение уровня альфа- фетопротеина, хорионического ганадотропина в сыворотке крови беременной.

Эти методы являются просеивающими для выявления врожденных пороков развития.

Например, при дефектах невральной трубки

повышается уровень альфа-фетопротеина.0


Молекулярно-генетические методы –

большая и разнообразная группа методов, предназначенная для выявления повреждений в структуре участка ДНК (гена, участка хромосомы) вплоть до расшифровки последовательности нуклеотидов.

Это наиболее точный метод диагностики моногенных наследственных заболеваний.

  • В основе методов лежат генно-инженерные манипуляции с ДНК и РНК.
  • Исходный этап молекулярно-генетических методов – получение образцов ДНК.
  • Источником геномной ДНК – любые ядросодержащие клетки (лейкоциты, хорион, амниотические клетки).

ДНК-диагностика

Молекулярно-генетические методы (рекомбинантной ДНК) – позволяет обнаружить патологический ген в геноме):

  • Образцы ДНК пациента под действием рестриктаз разрезаются на более короткие фрагменты.
  • Полученные фрагменты разделяют электрофорезом в полиакриламидном геле на фракции, отличающиеся размером (молекулярной массой).
  • Получение необходимого числа копий определенных фракций ДНК при помощи полимеразной цепной реакции (ПЦР).
  • Тепловая денатурация размноженной фракции двухцепочечной ДНК на одноцепочечные фрагменты.
  • Помещение этих фрагментов в среду с радиоактивным зондом (одноцепочечная ДНК, соответствующая патологическому гену).
  • Если среди фрагментов ДНК имеется комплементарная зонду патологическая последовательность, то происходит образование двухцепочечной ДНК.
  • Регистрация результата при помощи рентгеночувствительной пленки.

Генетика – наука, изучающая два фундаментальных свойства живых организмов -наследственность и изменчивость

Генетика – причудливая дама,

И пусть она порой твердит упрямо.

Что гены посильнее воспитанья,

И что любое перебьет влиянье.

Наследственность: не наша в том вина,

Что формирует личность,лишь она.


  • разработка методов управления наследственностью и изменчивостью
  • регуляции формирования естественных и искусственных популяций
  • изучение природы генетических болезней
  • решение проблем стойкости естественных и искусственно созданных видов.

Для генетических исследований человек является неудобным объектом: большое количество хромосом невозможность экспериментального скрещивания позднее наступление половой зрелости малое число потомков в каждой семье



  • Генеалогический метод
  • Биохимический метод
  • Дерматоглифический метод

  • Генеалогический метод – это изучение родословной человека. Его использование возможно лишь в том случае, когда известны прямые родственники – предки потомки обладателя наследственного признака по материнской и отцовской линии в ряду поколений
  • Он широко применяется в медицинской генетике, так как позволяет вычислить вероятность проявления какого либо признака у будущих потомков
  • Основные задачи:
  • Установление наследственного характера болезни
  • Установление типа наследования болезни
  • Использование в медико-генетических консультациях

Генеалогический метод


Наследуемые признаки и заболевания

Катаракта глаз

Сахарный диабет

Врожденная глухота

Альбинизм

Карликовость

Возможность сворачивать язык в трубочку

Веснушки

Заячья губа

  • Полидактилия

Синдром Марфана

Синдром вызван наследственным пороком развития соединительной ткани. Больные часто умирают от аневризма аорты. Единственная компенсация – повышенное содержание адреналина в крови, поэтому больные всю жизнь находятся в возбужденном состоянии и становятся невероятными трудоголиками.

Синдромом Марфана страдали всемирно известные личности: Авраам Линкольн – президент США (рост 193 см), Ганс Христиан Андерсен – великий писатель, Никколо Паганини –великий скрипач (болезнь придавала ему большие технические возможности).

В ХХ веке жили не менее талантливые «носачи». Это Шарль де Голль – президент Франции и Корней Чуковский – советский детский писатель


Целый ряд признаков наследуется сцеплено с полом

У-сцепленное наследование

  • Гипертрихоз (повышенное оволосенение ушной раковины0
  • -перепонки между пальцами

Х-сцепленное наследование

  • Гемофилия
  • -Дальтонизм

Использование генеалогического метода показало, что при родственном браке,значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. Ярким примером этого является наследование гемофилии в царских домах Европы.

Королева Виктория широко известна как носитель гена гемофилии


Генетика – упрямая штука. Но, все же, общие принципы всегда подразумевают исключения: дети от родственного брака могут быть нормальными, здоровыми и даже талантливыми Ч.Дарвин А.ПУШКИН А.Линкольн КЛЕОПАТРА А.ЛИНКОЛЬН КЛЕОПАТРА


  • Среди родственников выдающегося композитора И.С.Баха было более 50 музыкантов, 20 из которых заслуженно считаются знаменитыми.
  • Музыкальными талантами богата семья Моцарта, математическими- Бернулли,
  • литературными – Дюма.

  • Близнецы – это одновременно родившиеся дети. Они бывают однояйцевые (монозиготные) и разнояйцевые (дизиготные) Монозиготные близнецы развиваются из одной зиготы, которая на стадии дробления делится на две или более частей. Поэтому они генетически идентичны и всегда одного пола.Они характеризуются большой степенью сходства по многим признакам. Наблюдение за такими близнецами дает материал о роли наследственности и факторов окружающей среды в развитии признаков.

Конкордантность(степень сходства) некоторых признаков человека

Признаки

Монозиготные

Группа крови

близнецы

Дизиготные

Цвет глаз

близнецы

Цвет волос

Папиллярные линии

Бронхиальная астма

Туберкулез

Шизофрения


Европейки 1 на каждые 69 родов

Чернокожие американки 1 на каждые 60 родов

Японки 1 на каждые 150 родов

Китаянки 1 на каждые 250 родов

Нигерийки 1 на каждые 22 роды


  • Основан на изучении хромосомного набора человека. В 1956 г. шведские ученые Д. Тийо и А. Левин разработали метод культивирования человеческих лейкоцитов и остановки их деления в стадии метафазы с помощью колхицина. Это позволило максимально точно изучить кариотип человека. В норме кариотип человека включает 46 хромосом – 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменением их структуры. Такие болезни получили название хромосомных.

К числу хромосомных болезней относятся: синдром Клайнфельтера, синдром Шершевского – Тернера, трисономия Х,синдром Дауна и другие. Чаще всего они являются результатом мутаций,произошедших в половых клетках одного из родителей во время мейоза.

Синдром Клайнфельтера (47,ХХУ) – всегда мужчины, характерна недоразвитость половых желез, высокий рост. поперечная ладонная складка, у взрослых наблюдается ожирение и склонность к алкоголизму, незначительное снижение умственного развития.

Синдром Шершевского – Тернера (45,х0) – женщины, небольшой рост, широкие плечи, укороченные нижние конечности, шея короткая, со складками кожи, монголоидный разрез глаз, бесплодие.


Синдром Дауна – одна из самых часто встречаемых хромосомных болезней. Она развивается в результате трисономии по 21 хромосоме.

Синдром Патау - трисомия по 13 хромосоме, характеризуется идиотией, часто -полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;


Биохимический метод- позволяет обнаружить нарушения в обмене веществ, вызванные мутациями генов и, как,следствие, изменением активности различных ферментов (сахарный диабет, нарушения обмена аминокислот, липидов,минералов)

Фенилкетонурия – болезнь аминокислотного обмена. Описана в 1934 г. А. Фелингом.

Клинические признаки: повышенная возбудимость и тонус мышц, тремор, эпилептиформные припадки, «мышиный» запах, умственная отсталость, снижение образования меланина. Ранняя профилактика и лечение – искусственная диета.

Дети с ФКУ рождаются абсолютно здоровыми. Поэтому, если в течение первых дней жизни выявить заболевание и придерживаться диеты, то удается предотвратить разрушение мозга ребенка. При этом, никакие признаки заболевания не появляются. Малыш развивается и растет, как и его сверстники.


  • Группа метаболических заболеваний соединительной ткани связанных с нарушением обмена
  • Клинические признаки: отставание в росте, деформация позвоночника и грудины, деформация коленных суставов, короткая шея и гипертрофия нижней части лица, большой живот. Смерть чаще от сердечной патологии до 20 лет.

Дерматоглифический метод

  • это изучение папиллярных узоров пальцев, ладоней и стоп. На этих участках кожи имеются крупные дермальные сосочки, а покрывающий их эпидермис образует гребни и борозды. Дерматоглифические узоры обладают высокой степенью индивидуальности и остаются неизменными в течение всей жизни. Поэтому их используют для определения зиготности близнецов, для идентификации личности в криминалистике и установления отцовства в судебной медицине. Трудности использования По линиям рук можно установить более 100 наследственных болезней. (например, внутриутробное действие вируса краснухи дает отклонение в узорах сходные с болезнью Дауна).

Болезнь Дауна: лицо больного и ладонь (б)


Вставьте пропущенные слова

Генеалогический метод – изучение родословных человека – позволяет установить закономерности наследования многих признаков и наследственных заболеваний.

Генеалогический метод устанавливает закономерности передачи из поколения в поколение генов гемофилии, дальтонизма, серповидноклеточной анемии и др.

Близнецовый метод – изучение однояйцевых близнецов, развившихся из одной яйцеклетки – позволяет установить, какие из признаков в большей мере зависят от генотипа, а какие от среды и образа жизни.

Причина болезни Дауна – наличие в хромосомном наборе одной лишней, 21-й хромосомы

Биохимический метод позволяет обнаружить причины многих заболеваний, связанных с наследственными нарушениями обмена веществ, отсутствием или переизбытком в организме тех или иных элементов, ферментов, гормонов.

Цитогенетический метод, т.е. микроскопическое исследование хромосом в клетках человека, позволяет установить связь наследственных заболеваний с изменениями в генах, хромосомах или их числе.


  • правила написания:
  • 1.В первой строчке тема называется одним словом (обычно существительным). 2. Вторая строчка - это описание темы в двух словах (двумя прилагательными). 3. Третья строчка - это описание действия в рамках этой темы тремя словами. 4. Четвертая строка - это фраза из четырех слов, показывающая отношение к теме. 5. Последняя строка - это синоним из одного слова, который повторяет суть темы.


2024 logonames.ru. Финансовые советы - Портал полезных знаний.