Добыча сланцевого газа: последствия и проблемы. Гидроразрыв пласта Что такое добыча нефти методом фрекинга

Малая история ГРП

В мировой практике добычи нефти и газа, гидроразрыв пласта занимает видное место среди прочих методов интенсификации притока углеводородов. Однако в Украине последние несколько лет он подвергается критике, основанной на применении исключительно при добыче сланцевого газа, и сомнениях относительно совершенства технологий, которые нам якобы «навязывают» западные компании.

Альтернативой добыче собственных нефтегазовых ресурсов является их импорт. Стоимость импорта газа из России, основного поставщика для Украины, широко известна и она стала основной причиной активизации мер по снижению энергетической зависимости – диверсификации маршрутов и источников поставки газа, в т.ч.: внешней – поставки газа из Европы по схеме «реверса» и в виде СПГ , а также внутренней – увеличения собственной добычи на суше и шельфе.

Последнее время немногим компаниям, работающим на территории Восточной Европы, удается достигнуть значительного прогресса в добыче нефти и газа. В первую очередь это объясняется истощенностью месторождений и низким уровнем запасов, при которых традиционные методы бурения и добычи уже не работают. Другими словами, шансы на то, что после бурения обычной вертикальной скважины будет зафиксировано попадание в подземный природный резервуар скопления газообразных углеводородов и будет получен стабильный приток товарной продукции – невелики.

Условия добычи газа остаются почти неизменными на Севере России, Катаре, Иране и еще нескольких регионах, которые географически расположены над такими резервуарами, которые имеют гигантские масштабы и благоприятные условия залегания ископаемых. Более того некоторые из этих стран осуществляют обратную закачку добытого газа для увеличения давления в нефтяных пластах и таким образом – извлечения больших объемов нефти.

Однако все же большая часть стран мира вынуждена внедрять способы интенсификации добычи газа на своей территории, т.е. применять новые методы извлечения углеводородов на истощенных месторождениях и в новых, более глубоких, продуктивных горизонтах, где нефть и газ содержатся в плотных породах: угольных пластах, сланцах, плотных песчаниках и др.

Технология добычи углеводородов в плотных породах, которые залегают узким, но протяженным пластом, изначально требует бурения обычной вертикальной секции скважины, а после – горизонтальной секции (путем искривления ствола), сооружаемой внутри и вдоль продуктивного горизонта длинной около 1 км. Это позволяет увеличить площадь контакта с породой и соответственно увеличить приток товарной продукции с применением методов интенсификации добычи, известных и в США и СССР еще с 50-х годов прошлого века, в частности, такого как гидравлический разрыв пласта (ГРП ).

Применение именно таких методов позволяет странам с недостаточным ресурсным потенциалом, но высоким энергопотреблением получить, хотя бы относительную энергетическую независимость, снижая внешнее влияние от дорогостоящего импорта углеводородов.

Что такое «гидроразрыв пласта»?

«ГРП - один из методов интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин. Метод заключается в создании высокопроводимой трещины в целевом пласте для обеспечения притока добываемого флюида (газ, вода, конденсат, нефть либо их смесь) к забою скважины. После проведения ГРП дебит скважины, как правило, резко возрастает. Метод позволяет «оживить» простаивающие скважины, на которых добыча нефти или газа традиционными способами уже невозможна или малорентабельна. Кроме того, в настоящее время метод применяется для разработки новых нефтяных пластов, извлечение нефти из которых традиционными способами нерентабельно ввиду низких получаемых дебитов. Также применяется для добычи сланцевого газа и газа уплотненных песчаников» – Источник: Википедия.

Согласно терминологии «Газпрома»: «Гидроразрыв пласта – гидравлический разрыв пласта, - формирование трещин в массивах газо-, нефте-, водонасыщенных и других горных породах под действием подаваемой в них под давлением жидкости. Операция проводится в скважине для повышения дебита за счет разветвленной системы дренирования, полученной в результате образования протяженных трещин. Реализация гидроразрывов пластов на газовых скважинах стала возможной с появлением насосных агрегатов, обеспечивающих скорость закачки 3–4 куб.м/мин при давлении 100 МПа. При закачке в скважину рабочей жидкости с высокой скоростью на ее забое создается высокое давление. Если оно превышает горизонтальную составляющую горного давления, то образуется вертикальная трещина. В случае превышения горного давления формируется горизонтальная трещина.

В качестве рабочей жидкости, как правило, используют загущенные жидкости на водной или углеводородной основе. Вместе с рабочей жидкостью закачивают закрепляющий агент (песок или твердый материал фракции 0,5-1,5 мм), заполняющий трещину и препятствующий ее смыканию. При применении загущенной жидкости за счет снижения ее утечек в пласт можно поднять забойное давление при значительном снижении скорости закачки и за счет песконесущей ее способности транспортировать закрепляющий агент по всей длине трещины». На постсоветском пространстве общепринятым является сокращение – «ГРП», однако для подчеркивания негативного акцента процесса, чаще используется его иностранное название – «фрэкинг» (сокращение от англ. Hydraulic fracturing).

Некоторые факты про ГРП :

Жидкость для процесса в среднем 99,95% состоит из воды и песка с малой долей химических добавок, также используется вода и др. жидкости, азот или СО2, ранее применялся раствор с крахмалом;

Ежегодно десятки тысяч скважин подвергаются ГРП , по результатам которых пока что не доказано загрязнение подземных вод жидкостью применяемой при операции;

Лидерами применения и идеологами создания технологии являются США и Россия.

ГРП : насколько это новая технология?

ГРП не является новой технологией. Впервые он был применен в США в 1947 г. на газовом месторождении Hugoton в округе Грант юго-западного Канзаса компанией Stanolind. Эксперимент не был очень успешен. Патент на этом процессе был выпущен в 1949 г., а исключительная лицензия была выдана Halliburton Oil Well Cementing Company. 17 марта 1949 г. Halliburton выполнил первые два коммерческих ГРП в округе Стивенс (штат Оклахома), и округе Арчер (Техас). В качестве жидкости при первых ГРП использовалась техническая вода, в качестве расклинивающего агента – речной песок.
Чуть позже ГРП проводились и в СССР . В 1953-1955 гг. разработчиками теоретической основы стали советские учёные Христианович С.А. и Желтов Ю. П. (модель трещин ГРП «Христиановича-Желтова»), которые также оказали значительное влияние на развитие ГРП в мире. Сфера применения ГРП расширилась также на добычу метана из угольных пластов, газа уплотненных песчаников, а также сланцевого газа. Впервые в мире гидроразрыв угольного пласта был произведён в 1954 г. на Донбассе. Сегодня метод ГРП довольно часто применяется как государственными, так и частными добывающими компаниями как метод интенсификации добычи нефти и газа.

До 1988 г. в США было проведено более 1 млн. ГРП (1500 ГРП в месяц), а сфера применения этой операции настолько расширилась, что около 40% скважин после бурения подлежали проведению ГРП и более 30% запасов стало экономично выгодно разрабатывать с применением ГРП . Благодаря ГРП было обеспечено увеличение добываемых запасов на 1,3 млрд.т нефти.

В 2002 г. в Северной Америке была разработана модернизированная технология ГРП для коллекторов с высокой проницаемостью. Уже в 2005 г. было известно, что на 85% газовых и более 60% нефтяных скважин проводился ГРП . Таким образом, этот метод стал обычным методом завершения газовых скважин всех типов коллекторов.

За последние 65 лет, эта технология использовалась энергетическими компаниями для извлечения природного газа и нефти из ловушек в скальных образованиях, а также для стимулирования притока воды из водных скважин и доведения геотермальных скважин до коммерческой жизнеспособности. Сегодня, для получения или сохранения экономической целесообразности эксплуатации, девять из 10 сухопутных нефтегазовых скважин нуждаются в проведении ГРП .

ГРП – не является новинкой и для Европы. Например, во Франции, результаты отчета Парламентского управления по оценке научно-технологических решений (Office parlementaire d’évaluation des choix scientifiques et technologiques, OPECST ) указывали на то, что процесс ГРП использовался в стране с 1980-х годов не менее 45 раз без каких-либо последствий для окружающей среды. Для сравнения, в Великобритании начиная с 1970 г. было проведено более 200 ГРП . В 1980-х годах Германия и Нидерланды, для увеличения объемов добычи на существующих наземных скважинах, начали применять ГРП . Начиная с 1975 г. массивные ГРП были проведены в Германии на газовых скважинах в плотных песчаниках Rotliegend и угольных пластах (рис. 2), что до сих пор обеспечивает большую часть немецкой добычи природного газа.

До настоящего времени в Нидерландах ГРП произведен на более 200 скважинах. В частности за 2007-2011 гг. на 22 скважинах, в т.ч. 9 – на суше и 13 – на шельфе.

Этот период совпал с открытием новых нефтегазовых месторождений в Северном море. В 1970-х годах Великобритания, Норвегия, Нидерланды и др. начали их эксплуатацию.

Инновационные возможности горизонтального бурения, которое позволяет добывать газ в больших объемах, были подтверждены французской компаний Elf Aquitaine, которая, в период 1980-1983 гг., успешно осуществила бурение нескольких скважин на юго-западе Франции.

Несмотря на успешность продвижения технологии страны ЕС по-разному рассматривают применение ГРП и вообще разработку сланцевого газа.
Статья 194 Лиссабонского договора (международный договор, подписанный на саммите ЕС 13 декабря 2007 г.), который был призван заменить не вступившую в силу конституцию ЕС, гласит, что принятие решений о структуре потребляемых энергоресурсов относится к компетенции конкретных государств-членов ЕС в свете отдельных энергетических приоритетов, проблем энергетической безопасности и имеющихся ресурсов. Именно поэтому разные страны-члены ЕС применяют различные подходы к разработке сланцевого газа.

Пример тому, Польша – крупный импортер природного газа, а также крупнейший в ЕС производитель и потребитель угля. Правительство Польши приняло решение о разведке сланцевого газа, как средства для поддержки снижения внутренней добычи традиционного газа, декарбонизации своей экономики (уменьшения объемов потребления угля и его доли в структуре энергобаланса) и уменьшения зависимости от импортируемого газа.

Другие страны, такие как Великобритания, Дания, Швеция, Венгрия, Румыния и Литва также изучают, планируют изучить потенциал своих ресурсов и постепенно внедряют ГРП на своих месторождениях. Пока что лишь три страны ЕС: Франция, Чехия, Болгария заблокировали использование ГРП на своей территории.

К концу ХХ века совместное применение горизонтального бурения и гидроразрыва вызвали революцию в газовой отрасли, которая началась в США и теперь меняет мир. (О роли США в сланцевой революции см. публикацию .) Несмотря на различное отношение к добыче сланцевого газа, США и Россия являются странами, где ГРП получил наиболее широкое распространение как один из основных методов добычи нефти и газа, – ежегодно производится несколько тысяч таких операций.

Мировые тенденции развития и расширения использования этого метода затронули не только страны Европы, но и Россию, и Украину, которые уже более 65 лет используют его на своих истощаемых месторождениях. Однако с 2006 г., на фоне обострения межгосударственных взаимоотношений в вопросе стоимости импорта российского газа, Украина определила одной из альтернатив снижения газовой зависимости от России – активизацию деятельности по разведке и добыче сланцевого газа. С этого момента официальные позиции двух стран, профессионального сообщества и граждан общества двух братских народов, относительно ГРП , стали расходиться.

Александр Лактионов
Главный специалист по исследованию энергетических рынков компании “Смарт Энерджи”

В современной отрасли нефтедобычи гидроразрыв пласта (ГРП) представляет собой эффективный метод воздействия на призабойную область скважины. Этот способ необходим для увеличения продуктивной отдачи от месторождения нефти или газа, степени поглощения нагнетательных разновидностей скважин, а также в рамках работ по изоляции грунтовых вод. Сам процесс гидравлического разрыва пласта включает создание новых трещин и увеличение уже имеющихся, которые пролегают в призабойной породе. Воздействие на трещины происходит посредством регулировки давления жидкости, подаваемой в скважину. В результате гидроразрыва пласта из скважины становится возможно добывать ценные ресурсы, расположенные на удаленном расстоянии от ствола.

Из истории появления гидроразрывов пласта

Разработки по увеличению производительности нефтедобычи из готовых скважин проводились в Штатах уже в конце XIXвека: тогда был опробован способ стимулирования посредством взрыва нитроглицерина, который разбивал твердые породы и позволял получать оттуда ценные ресурсы. В тот же период производились испытания по разработке призабойной зоны при помощи кислоты, и последний метод получил активное распространение в 30-е годы прошлого века.

В ходе применения кислоты для стимулирования продуктивности скважин было установлено, что повышение давления может привести к разрывам пластов. С этого началось развитие идеи гидроразрыва пластов породы, и первую попытку предприняли уже в 1947 году. Несмотря на неудачу, исследователи продолжали разработку метода, и их работы увенчались успехом спустя два года. В 50-е годы в Штатах все чаще стали проводиться разработки с применением метода гидравлических разрывов пласта, и к последней трети XXвека число таких операций превысило миллион только в самой Америке.

Гидравлический разрыв пласта как методика разработки скважин стал использоваться и в СССР: первые попытки отмечены 1959 годом. После этого наступил период угасания популярности этого способа, поскольку на территории Сибири стали разрабатывать скважины, которые и без дополнительных манипуляций обеспечивали бесперебойную добычу нефти и газа в нужных объемах. С конца 80-х методика вновь получила распространение, когда прежние месторождения перестали давать такое же количество ценных ресурсов, но еще не могли быть сочтены полностью исчерпанными. В настоящее время методика гидравлического разрыва пласта применяется на территории всей России, а также в других государствах.

Разновидности гидравлических разрывов пласта

В современной области разработки ресурсов различают два вида гидравлического разрыва:

  • Проппантный гидроразрыв пласта. При этом методе применяется специальный материал для расклинивания. Во время процедуры проппант заливают внутрь для того, чтобы создаваемые от давления трещины не соединялись обратно. Такая разновидность способа хорошо подходит для песчаников, алевролитных и других терригенных пород. Гидравлический разрыв с пропаннтом используется чаще всего.
  • Гидроразрыв пласта с применением кислоты. Такой метод более приемлем для карбонатных пород, и трещины, которые получаются при сочетании повышения давления и добавления разрушающей жидкости, не нуждаются в дополнительном закреплении, как в первом случае. Главное отличие кислотного гидравлического разрыва от обычной обработки той же кислотой заключается в количестве материала и степени давления.
Вне зависимости от типа обработки успешность применения ГРП зависит от ряда факторов. Прежде всего, объект для осуществления метода должен быть выбран с учетом его особенностей, видов пластов, а также глубины и интенсивности разработки. Выбор технологии зависит от условий, в которых находится скважина. При правильном применении эффективность нефтедобычи в обработанной скважине становится намного выше.

Процесс проведения гидроразрыва пласта


Гидроразрыв пласта целесообразно проводить для скважин с невысокой продуктивной способностью, которая происходит из-за естественной плотности слоев или при снижении качества фильтрации после вскрытия очередного слоя.

Процесс обработки занимает несколько этапов:

  • Исследование скважины, в ходе которого определяется ее способность к поглощению, устойчивости к давлению и другие параметры.
  • Очистка скважины. Для этого применяют дренажные насосы и промывают ствол, чтобы свойства фильтрации в призабойной области были достаточными для дальнейшей работы. Также скважина может быть обработана соляной кислотой, чтобы условия для формирования трещин от разрыва были оптимальны.
  • Спуск в скважину труб для подачи жидкости в забой. Обсадная колонна оснащается пакером и гидроякорем для того, чтобы давление не деформировало трубу. Устье оснащается головкой для подсоединения оборудования, которое необходимо для нагнетания промывочной жидкости.
  • Сам гидроразрыв производится посредством нагнетания жидкости до того времени, пока в пласте не появятся трещины. Сразу после гидравлического воздействия требуется закачать жидкость на высокой скорости.
  • Устье перекрывается, скважину не трогают до уменьшения показателей давления.
  • Промывка скважины после гидравлического разрыва и освоение.

При небольшой глубине гидроразрыв пласта может быть осуществлен без труб НКТ либо без предохранителя. В первой ситуации нагнетание производится по обсадным трубам, а во второй оно может быть организовано и по кольцу вокруг них. Данная методика позволяет минимизировать потери в показателях давления, если в процессе используется жидкость очень густой консистенции. Кроме того, для некоторых скважин проводят многоступенчатый разрыв, при котором разные пласты получают трещины, благодаря чему их проницаемость сильно возрастает.

Для определения местоположения самих трещин применяется метод радиоактивного каротажа. Данная технология позволяет узнать, где именно находятся разрывы, при введении обыкновенного и заряженного песка.

Гидроразрыв угольного пласта впервые в СССР был осуществлен в 1954 году российским институтом «Промгаз» в рамках работ по подземной газификации Донбасских углей. Сегодня метод гидроразрыва пласта часто применяется государственными и частными добывающими компаниями как метод интенсификации добычи нефти и газа. Например, в настоящее время компания "Роснефть" осуществляет порядка 2 000 операций по гидроразрыву пласта в год. Гидроразрыв пласта активно используют для добычи метана из угольных пластов (80% скважин), газа уплотненных песчаников, сланцевого газа.

При гидроразрыве пласта создается высокопроводимая трещина в целевом пласте, чтобы обеспечить приток добываемого полезного ископаемого к забою скважины. Гидроразрыв используется с целью интенсификации добычных скважин и увеличения приемистости нагнетательных скважин. Говоря простым языком, гидроразрыв пласта — это разрушение горной породы высоким давлением воды.

При помощи гидроразрыва зачастую удается «оживить» простаивающие скважины, где добычные работы традиционными способами не приносят уже результата. Современные методы гидроразрыва применяются при разработке новых нефтяных пластов, имеющих низкие получаемые дебиты, что делает их разработку традиционными способами нерентабельной. В последнее время гидроразрыв пласта стали применять для добычи сланцевого газа и газа уплотненных песчаников.

Гидроразрыв пласта при добыче нефти заключается в подаче в нефтяную скважину под высоким давлением жидкости разрыва (гель, вода, кислота). При этом давление, создаваемое при закачке жидкости, должно быть выше давления разрыва нефтеносного пласта. В терригенных коллекторах для поддержания открытой трещины используется проплант (расклинивающий агент), в карбонатных коллекторах — кислота или проплант.

При добыче нетрадиционного газа гидроразрыв пласта соединияет поры плотных пород и обеспечивает возможность высвобождения природного газа. При этом в скважину закачивается специальная смесь, на 99% состоящая из воды и песка, и на 1% - из химических реагентов (хлористый калий, гуаровая смола, дезинфицирующие средства, средства для предотвращения образования отложений).

Первый гидроразрыв пласта был выполнен в США в 1947 году компанией Halliburton, которая в качестве жидкости разрыва применила техническую воду, а в качестве расклинивающего агента — речной песок.

В настоящее время компания Шелл методом гидроразрыва пласта собирается добывать в промышленных объемах сланцевый газ на Юзовской газоносной площади, расположенной на территории Донецкой и Харьковской области в Украине.

Этот контракт был заключен украинским правительством с целью решения проблемы энергоносителей, которая вот уже несколько последних лет остро стоит на повестке дня, поскольку цена на российский газ превышает 400 долларов за 1000 м3.

Тем не менее, как только будущий проект начал обретать свои очертания, сразу же появились ярые его противники — в обществе начали распространяться слухи о будущих катастрофах, которые вызовет добыча сланцевого газа, технических трудностях, дороговизне добычных работ, малой перспективности и неэффективности. Получается парадоксальная ситуация: с одной стороны Украина пытается решить свои газовые проблемы, с другой — общественное мнение настраивается против такого решения.

Аналогию можно провести с Джном Юзом, именем которого названа газоносная площадь. Тогда, полтора столетия назад перед царской Россией стояла дилемма: поверить бельгийцу и положиться на его гений или же поверить желтой прессе, обвинявшей того во всех смертных грехах. Чиновники выбрали первый вариант, и как показала история, не прогадали - к 1917 году Новороссийское общество в Юзовке давало львиную долю чугуна, стали, угля и кокса в стране.

Несколько прояснил нынешнюю ситуацию с добычей сланцевого газа на Донбассе декан горно-геологического факультета Донецкого Национального технического университета Артур Аркадьевич Каракозов.

Авторитетный специалист рассказал, что недавно компанией Шелл при содействии Британского совета провела на базе университета в Донецке семинар по разъяснению нюансов будущих работ по добыче сланцевого газа.

Подобная ситуация была и в Великобритании, когда общественное мнение настраивалось против новых технологий. Раньше сланцевый газ добывался примитивными методами - бурилась обычная вертикальная скважина, вокруг которой делался гидроразрыв пласта. Такая технология давала обработать только небольшую часть газосодержащего пласта. Чтобы увеличить газоотдачу, рядом бурились многочисленные скважины, что навсегда убивало экологию в данной местности.

С развитием технологий геологи научились изначально вертикальную скважину искривлять по мере ее бурения вглубь. Современные технологии позволяют на определенной глубине первоначально вертикальную скважину переводить в полностью горизонтальную, что дает возможность охватывать большой объем газоносных пород. При гидроразрыве пласта такая скважина дает гораздо больше газа, чем традиционная вертикальная. Следующим шагом было использование технологий кустового бурения, когда из одной вертикальной скважины на глубине делается несколько стволов с горизонтальными участками. Такая густо разветвленная под землей скважина заменяет десятки традиционных вертикальных скважин. Подобные технологии нефтяниками применяются уже более 30 лет. Другое дело, что в бывшем СССР, да и во всём мире, вопрос о сланцевом газе так остро не стоял, поскольку нефти и традиционного газа было в избытке.

На данный момент, увы, газа и нефти становится все меньше, а добывать их становится все труднее, а значит, затратнее. Поэтому, в сложившейся ситуации стало экономически выгодно применить разработанные технологии для добычи сланцевого газа. Но, поскольку его добыча имеет свои особенности, то появились новые технические средства, материалы, телеметрические системы контроля и управления бурением, позволившие значительно повысить эффективность буровых работ.

Какой благовоспитанный и солидный человек, с такой милой, постоянной, доброй улыбкой на лице. Знаете кто это?
Это ни кто иной как Джорж Митчел, руководитель собственной компании Mitchell Energy & Development Corp, ради обогащения, ради той самой прибыли, он сделал все возможное и невозможное, но добился, чтобы добычу сланцевой нефти сочли рентабельной и сильные мира сего вложили свои миллиарды в разработку.
Перед вами убийца всего живого на миллионах акров земли, во множестве стран мира. Это после его успеха, из водопроводных труб незадачливых лузеров не вписавшихся в рынок, то есть местных жителей, которым не повезло жить в окрестностях тех мест, где он и его последователи начали добычу сланцевой нефти, потекла вода вспыхивающая от поднесенной спички. Это после того, как он ударил по рукам со своими спонсорами, миллионы тонн химикатов по всему миру загрязнили подземные воды, землю, убили все живое вокруг, привели к рождению калек, болезням и смертям людей. Хотя если быть точным, то он лишь один из многих... Разве есть преступление на которое не пойдет капитал при достаточном проценте прибыли?

«Обеспечьте капиталу 10% прибыли, и капитал согласен на всякое применение, при 20% он становится оживленным, при 50% положительно готов сломать себе голову, при 100% он попирает все человеческие законы, при 300% нет такого преступления, на которое он не рискнул бы пойти, хотя бы под страхом виселицы».

Так о чем же идет речь?

Сланцевая нефть - полезное ископаемое из группы твёрдых каустобиолитов, дающее при сухой перегонке значительное количество смолы близкой по составу к нефти. (Каустобиолиты - горючие полезные ископаемые органического происхождения, представляющие собой продукты преобразования остатков растительных, реже животных, организмов под воздействием геологических факторов. По крайней мере так считается общепризнанным.
Есть альтернативная минеральная теория, о которой мы почти не слышим. Ее основателем считают Менделеева. Сторонники этой теории считают нефть продуктом химических реакций, происходящих на большой глубине и не связанных с органическими останками. И скорость этих процессов сотни, а то и десятки лет. То есть нефть способна восстанавливаться в прежнем и больших объемах спустя определенный промежуток времени внутри опустевшего месторождения!)

Сжигать нефть?! Точно также можно ведь топить (печь) ассигнациями .
Д. Менделеев.
(Ассигнация - это историческое название бумажных денег, выпускавшихся в Российской Федерации в период с 1769 до 1849.)

Из одной тонны обогащенного черным золотом сланца при помощи новейших технологий можно добыть только 0,5 - 1,25 барреля. (1 Нефтяной баррель = 158,987 литра.)

Опять же все привыкли говорить о сланцевой нефти, но почему то забывают о сланцевом газе, а там подобные же схемы добычи...

(Сланцевый газ ставший рентабельным в 2000-е годы привел к переделу мировой газовый рынок. Благодаря широкому внедрению технологии фрекинга- гидроразрыва пластов, американцы научились добывать газ из сланцевых пород, существенно снизив издержки. Дешевый газ хлынул на рынок США и завоевал его в течение какой-то пары лет. Америка стала добывать больше, а импортировать, соответственно, меньше, что оказало сильнейшее давление на цены по всему миру.)

Какая разница в добыче обычной нефти и сланцевой? Ведь обычная добыча тоже загрязняет природу и разрушает экологию планеты.

При классическом способе добычи нефти используется поэтапный метод: Первичный. Жидкость поступает под воздействием высокого давления в пласте, которое образуется от подземных вод, расширения газов и прочее. При таком способе коэффициент извлечения нефти составляет примерно 5-15%.

Вторичный. Такой метод используется тогда, когда естественного давления уже недостаточно, чтобы поднимать нефть по скважине и он заключается в использовании закачиваемой воды, попутного или натурального газа. В зависимости от пород резервуара и характеристик нефти, коэффициент извлечения нефти при вторичном методе достигает 30%, а суммарное значение - 35-45%.

Третичный. Такой метод заключается в увеличении подвижности нефти для повышения ее отдачи. Один из способов - это TEOR, при помощи которого за счет нагрева жидкости в пласте уменьшается вязкость. Для этого наиболее часто применяется водяной пар. Реже используется частичное сжигание нефти на месте, непосредственно в самом пласте. Однако такой способ не очень эффективен. Для изменения поверхностного натяжения между нефтью и водой можно ввести специальные поверхностно активные вещества или детергенты. Третичный метод позволяет повысить коэффициент извлечения нефти еще примерно на 5-15%. Данный способ используется лишь в том случае, если добыча нефти продолжает оставаться рентабельной. Поэтому применение третичного метода зависит от цен на нефть и стоимости ее извлечения.

Но человек на фото добился, так называемой, революционной добычи нефти из сланцев.

Существует два основных способа получения необходимого сырья из горючих сланцев. Первый - это добыча сланцевой породы открытым или шахтным способом с ее последующей переработкой на специальных установках-реакторах, где сланцы подвергают пиролизу без доступа воздуха, в результате чего из породы выделяется сланцевая смола. Этот метод активно развивался в СССР. Хорошо известны также проекты по добыче сланцев в провинции Фушунь (Китай), на месторождении Ирати (Бразилия).

А второй это гидравлический разрыв пласта —процесс, который предполагает введение смеси воды, песка и химических веществ в газоносные породы под чрезвычайно высоким давлением (500-1500 атм). Давление приводит к образованию крошечных трещин, которые позволяют газу вырваться. Вся эта система трещин связывает скважину с удаленными от забоя продуктивными частями пласта. Для предотвращения смыкания трещин после снижения давления в них вводят крупнозернистый песок, добавляемый в жидкость, нагнетаемую в скважину. Радиус трещин может достигать нескольких десятков и даже сотен метров. Процесс разрыва в большой степени зависит от физических свойств жидкости и, в частности от ее вязкости. Чтобы давление разрыва было наименьшим, нужно, чтобы она была фильтрующейся.
Повышение вязкости так же, как и уменьшение фильтруемости жидкостей, применяемых при разрыве пластов, осуществляется введением в них соответствующих добавок. Такими загустителями для углеводородных жидкостей, применяемых при разрыве пластов, являются соли органических кислот, восокомолекулярные и коллоидные соединения нефти (например, нефтяной гудрон и другие отходы нефтепереработки). Значительной вязкостью и высокой песконесущей способностью обладают некоторые нефти, керосино-кислотные и нефте-кислотные эмульсии, применяемые при разрыве карбонатных коллекторов, и водо-нефтянные эмульсии.
Эти жидкости и используются в качестве жидкостей разрыва и жидкостей-песконосителей при разрыве пластов в нефтяных скважинах. Применение жидкостей разрыва и жидкостей-песконосителей на углеводородной основе для разрыва пластов в водонагнетательных скважинах может привести к ухудшению проницаемости пород для воды вследствие образования смесей воды с углеводородами. Во избежание этого явления пласты в водонагнетательных скважинах разрывают загущенной водой. Для загущения применяют сульфид-спиртовую борду и другие производные целлюлозы, хорошо растворимые в воде.
Как правило жидкости используемые в этом методе канцерогенные... Особо опасно попадание в грунтовые воды всех этих химических реагентов, используемых при гидравлическом разрыве в частности в пласты содержащие артезианскую воду, используемую для питья. Операцию гидроразрыва пластов на одной территории приходится повторять до 10 раз в год. При гидроразрыве химическая смесь пропитывает породу, что ведёт к загрязнению значительной территории...

В англоязычных СМИ репортеры наперебой обсуждают химический состав раствора для проведения гидроразрывов, используемый компаниями, добывающими сланцевый газ. В целом, объем воды, необходимой для проведения гидроразрыва - например, в формации Марселлус, составляет порядка 16 тыс. тонн. При этом сами компании всегда сообщали, что от 98 до 99% раствора - это просто вода и песок. Вопросы вызывали оставшиеся 1-2%. Эти оставшиеся проценты, которые вполне могут попасть в питьевую воду по трещинам, образовавшимся в породе после гидроразрыва, весьма волнуют американскую общественность. В абсолютном исчислении количество химикатов весьма велико: если общая масса воды и песка - около 16 тыс. тонн, которые доставляют несколько сотен автоцистерн, то доля химических добавок может составлять до 320 тонн.

По информации, предоставленной компанией Halliburton, которая впервые провела гидроразрыв в 1947 г, выступив пионером в этой области, 98,47% объема жидкости, которая используется для гидроразрыва - это смесь воды и песка, а 1,53% - химические добавки - формальдегид, хлорид аммония, уксусный ангидрид, метиловый и пропиловый спирты, а также соляная кислота.

После того, как смесь для гидроразрыва готова, ее закачивают под землю с усилием до 70 МПа. Давление воды вызывает появление трещин, а песчинки, которые загоняет в эти трещины поток жидкости, мешает их последующему схлопыванию. К слову, под словом "песчинки" подразумевается не только обычный песок, но и песок с полимерным покрытием (resin-coated sand) и частицы спеченного боксита.

Проведение одного гидроразрыва занимает от 3 до 10 дней. При этом компания Chesapeake Energy использует совершенно иные химикаты, чем Halliburton, и доля их в готовом растворе намного ниже, порядка 0,5% добавок. О чем они с гордостью заявляют...

К слову, задачу специалистов, работающих в американских департаментах защиты окружающей среды, действующих в каждом штате, осложняет то, что разные компании используют различные наборы химикатов, их свыше 85...

Необходимо сказать несколько слов о понятии сланцевая нефть . В Америке, где сланцевая нефть стала играть существенную роль в повышении нефтедобычи, под этим термином часто понимают нефть двух видов. Сланцевой называют нефть, получаемую из горючих сланцев, которая по своим свойствам (плотности, вязкости) значительно отличается от традиционной легкой нефти. Одновременно с этим часто тем же самым термином обозначают нефть по свойствам аналогичную обычной легкой нефти, но содержащуюся в плотных низкопористых низкопроницаемых коллекторах (сланцах). Чтобы разделить эти два вида нефти (оба из которых добываются из сланцев) специалисты пользуются двумя терминами: shale oil - для высоковязкой сланцевой смолы из горючих сланцев, требующей дополнительной обработки для превращения ее в нефть и tight oil - для легкой нефти, содержащейся в коллекторах с низкими фильтрационно-емкостными свойствами.

В России:

Россия пустила на свои месторождения американцев, которые добывают сланцевую нефть на сибирских месторождениях. Наиболее активно экологически опасные методы гидроразрыва пласта используют на Баженовском месторождении, где давно работают западные нефтесервисные компании. Щадящая советская технология термонагрева сланцев пока не доработана и может оказаться вообще невостребованной. "Роснефть", "Лукойл" и "Газпром нефть" имеют свои участки на Баженовском месторождении, трудноизвлекаемую нефть они добывают с помощью бурения горизонтальных скважин и гидроразрыва пласта. Неслучайно в 2012 году российские нефтяные боссы посетили конференцию по добыче сланцевых углеводородов в США, где рассказали о своем опыте работы в этом направлении. Роснефть опробовала горизонтальное бурение с гидроразрывом пластов в 2011 году на Приобском месторождении. Позже этот метод использовался на 50 скважинах, в то время как в 2012 году их было три. Самым активным пользователем технологии на сегодняшний день является "Лукойл", компания к началу 2013 года пробурила 215 горизонтальных скважин и добыла таким образом 19 миллионов баррелей нефти. В планах у компании было довести количество таких скважин до 450 скважин. Есть опыт такого бурения и у купленной "Роснефтью" ТНК-ВР, число скважин которой превысило сотню. Добывать нефть из сложного месторождения российские компании решили в тесном сотрудничестве с западными нефтедобывающими корпорациями и нефтесервисными компаниями. Так "Газпром нефть" обещал в 2012 что приступит к освоению Баженовской свиты совместно с Royal Dutch Shell Plc в течение трех лет. Роснефть на свои участки запустит Exxon Mobil Corp. В стране уже активно работают три крупнейшие нефтесервисные компании мира:
- Schlumberger Ltd. (SL
- Weatherford International Ltd. (WFT);
- C. A.T. Oil AG, которые по всей вероятности и будут выступать подрядчиками.
Чтобы сохранить собственную маржу и дать заработать американцам, нефтяники пролоббировали пониженный налог на сланцевую нефть. Значит, в бюджет от этой нефти будет поступать намного меньше денег. Кроме того, они получили обещание снизить экспортные пошлины в случае заметного падения цен на нефть, которого, к слову, эксперты не ожидали в то время... Административный компонент черного золота будет регулироваться с учетом более высокой себестоимости сланцевой добычи.
В настоящее время известно более 70 месторождений с открытыми запасами нефти в пластах сланцев в северной части России. Баженовская свита распространена в Западно-Сибирской НГП на территории более 1 млн км3. Отложения бажена выделены в пределах ХМАО-Югра, Тазовского п-ова, п-ова Гыдан, восточной и центральной части п-ова Ямал. Отложения баженовской свиты залегают на глубине от 600 м у границ распространения до максимальных глубин 3500-3800 м.

В США:

В США основные запасы сланцевой нефти располагаются на юге Техаса (Игл Форд),

в районе Скалистых гор (Найобрара формейшн, Баккен Шейл), на западном побережье (Монтерей формейшн) , а так же на северо-востоке США (Ютика Шейл) и в восточной части Канады (Кардиум формейшн)
В результате сланцевой революции в США количество добывающих скважин с двух сотен в 2000-2005 годах быстро выросло почти до 5000 скважин к концу 2012 года. И если в 2008 году добыча сланцевой нефти на месторождении Bakken составляла лишь около 1% от общего объема добычи в США, то к концу 2012 года на месторождении добывается без малого 700 тыс. барр/день, что составляет около 10% всей нефтедобычи в США. А всего в стране добывается уже более полутора миллионов барр/день сланцевой нефти и ею обеспечена значительная часть общего роста добычи нефти в США.

В Иордании:

Страна в недостаточной мере обеспечена пресной водой, которая при нынешних технологиях добычи нефти из сланца расходуется в значительных объемах. Учитывая тот факт, что страна снабжается пресной водой из двух рек - Ярмука и Иордана, которые приносят в год до 850 млрд. куб. м пресной воды (из которых более 28 млрд. куб. м уйдут на обеспечение добычи сланцевой нефти), уже в 2015 году при выполнении заявленных планов по разработке нефтяных сланцев в Иордании может образоваться 5% дефицит пресной воды, не учитывая рост населения и увеличения потребления воды в других секторах экономики. Тем не менее, потенциальная опасность не останавливает иорданское правительство, ожидаемые доходы от экспорта нефти видятся для страны привлекательнее возможного дефицита важнейшего ресурса.

В Израиле:

По оценкам Israel Energy Initiatives (IEI) ресурсы нефтяного сланца в долине составляют около 34 млрд. т, что соразмерно запасам нефти в Саудовской Аравии. Israel Energy Initiatives (IEI) - израильская компания, базирующаяся в Иерусалиме.
В Израиле планируют применить принципиально новые методы извлечения нефти из керогена, не похожие на используемые методы в других странах. На начальных этапах добыча будет вестись методами внутрипластовой добычи с использованием электрических и газовых нагревателей, а позже, согласно сообщениям IEI, будет разработана технология, направленная на радикальное снижение объемов воды, требуемых для добычи. Одной из основных целей проекта является именно разработка и апробация этой технологии уже к 2019-2020 гг. Такая технология позволит не только не тратить на добычу сланцев значительные объемы воды, как это происходит сейчас, но и каким-то образом получать воду вместе с нефтью на подобных месторождениях.

Стоит отметить, что этот проект во многом является проектом геополитической спекуляции. Руководители компании-оператора и ведущие инвесторы проекта - британец Якоб Ротшильд и американцы Руперт Мердок и Дик Чейни, открыто выражают свое мнение по поводу геополитической направленности проекта, позиционируя его во многом как проект, нацеленный против ресурсного национализма арабских нефтедобывающих стран. Джонас, ярый сионист, полагает, что запасы Шфела это только начало: "Мы считаем, что в Израиле больше нефти, чем в Саудовской Аравии. Там может быть до полутриллиона баррелей". Поскольку транснациональные нефтяные компании опасаются развивать месторождение Шфела, за развитие этого крупнейшего в мире месторождения взялась компания, которая ранее не занималась этим бизнесом, компания IDT

В Марокко:

К принципиальным изменениям на собственном рынке нефти готовится и еще одна страна-импортер. В Марокко еще во второй половине 2000-х гг. совместно с правительством США был запущен пилотный проект по добыче нефтяного сланца Тарфайа (Tarfaya Oil Shale Pilot Plant project) под управлением компании «Сан Леон Энерджи».
Ресурсы страны оцениваются в 7,3 млрд. т нефти, ресурсы Тарфайи - в 3,11 млрд. т.В 2010 году проект перешел в стадию обустройства месторождения и инфраструктуры. По оценкам компании-оператора, уже к 2013 году на месторождении будет производиться 3 млн. т нефти в год

Второй проект - Тимагди - оценивается в 2,05 млрд. т.н.э. Проект должен был стартовать еще в 2011 году, но по непонятным причинам был отложен до начала 2012 года. По оценкам компании уже в 2012 году на месторождении будет добыто 2,5 млн. т нефти.
Потребление Марокко на 2011 год составило 11,4 млн. т нефти, а производство, - всего лишь 9 тыс. т в год. За счет добычи нефти на этих проектах страна уже в ближайшие годы сможет сократить разрыв между производством и потреблением, даже несмотря на рост спроса в стране (по оценкам ИНЭИ РАН, к 2015 году спрос на нефть достигнет 11,8 млн. т). Стоит также отметить, что в Марокко имеется НПЗ, рассчитанный на переработку 10 млн.т нефти, в данный момент загруженный только наполовину импортным сырьем. Добыча 5 млн. т собственной нефти позволит африканской стране отказаться от импорта нефтепродуктов и высвободить для своих североафриканских соседей, в частности для Ливии, возможность дополнительно экспортировать 5 млн. т нефти в Европу.

В Китае:

Ресурсы нефтяного сланца Китая оцениваются более чем в 46 млрд. т н.э., в то время как технически извлекаемые из нефтяного сланца запасы сланцевой нефти (shale oil) составляют 550 млн. т. На конец 2011 года, по данным ВР statistical review of World Energy, доказанные запасы традиционной нефти в Китае составляли 2 млрд. т. Несмотря на значительные ресурсы, страна не спешит начать активную добычу нефти из сланцевых плеев. На данном этапе добыча из этих источников составляет 350 тыс. т в год, что соразмерно 0,2% от общего объема добычи в стране. На данный момент китайские компании активно инвестируют в разработку месторождений нефти низкопроницаемых пород в Северной Америке, обучаясь технологиям мультистадийного гидроразрыва пласта в совокупности с наклоннонаправленным бурением. На данном этапе сложно сказать, когда Китай начнет (и начнет ли вообще) применять эту технологию на собственных формациях.

Китай принимает участие в добыче нефти в США...
По некоторым прогнозам значительного роста добычи и нетрадиционной, и традиционной нефти в Китае не ожидается. К 2030 году общая добыча страны по прогнозам CERA составит 175-185 млн. т, а добыча сланцевой нефти - 3 млн. т, в то время как спрос к этому же моменту может возрасти до 665 млн. т. К 2030 году суммарная добыча нефти прогнозируется на уровне 176-190 млн. т, добыча нефти сланцевых плеев на уровне 4-15 млн. т. н.э., при спросе в 665,6 млн. т.

Согласно сообщению China"s National Energy Administration добыча нефти из нефтяного сланца в Китае может составить около 10 млн. т в год.
Почему же один из ведущих нефтеимпортеров мира не развивает собственную добычу нефти за счет запасов в нетрадиционных источниках?

Да потому, что там понимают далеко идущие последствия, нефть пить не будешь... В экологическом плане в Китае итак далеко не райская жизнь.

К тому же:
- китайские компании проводят политику активной инвестиционной экспансии на Ближнем Востоке, в Канаде, Африке и в Латинской Америке, обеспечивая собственную страну сырьем, добываемым за рубежом, а разработку собственной нефти откладывают «до лучших времен». Аналогичную политику в свое время проводили США, законсервировав значительное число собственных месторождений и осуществляя экспансию на зарубежные рынки силами компаний-мейджоров;
- отсутствие у Китая технологий, позволяющих добывать сланцевую нефть без серьезного ущерба для экологии и водоснабжения населения. Как уже было отмечено выше, современные технологии добычи сланцевой нефти предполагают значительные водозатраты, в то время как в Китае 65% пресной воды уходит на мелиорацию, а 60% значительно загрязнены и непригодны для питья. Во многих районах воды для использования в добыче просто нет. Добыча сланцевой нефти в больших объемах может привести Китай на грань настоящей экологической катастрофы . Однако, если вспомнить про разрабатываемую в Израиле «экологичную» технологию добычи сланцев с попутной добычей пресной воды, после масштабного внедрения этой технологии в мире ситуация для азиатского рынка может резко измениться; Основные запасы нефтяных сланцев сконцентрированы в провинциях Северо-Восточного Китая и в крупном промышленном центре Фушунь (восточная часть страны, менее 200 км до границы с Северной Кореей).

Национальные корпорации ведут добычу на нескольких пилотных месторождениях этих провинций, используя в основном внутрипластовые методы добычи с последующей переработкой углеводородной смеси в синтетическую нефть на заводах - апгрейдерах. По сообщению компании McKinsey & Company запасы нефти низкопроницаемых пород в Китае могут оказаться в 1,5 раза больше, чем в Северной Америке, что в перспективе может привести к значительному росту добычи этого вида нефти (точные цифры в сообщении не приводятся).

В Японии:

3 октября 2012 года в Японии добыли первую нефть. Компания распространила сообщение, что эксперимент будет осуществлен в районе города Ога в префектуре Акита. Ее запасы в самой Японии невелики. Но Japex рассчитывает таким путем освоить самые современные технологии добычи сланцевой нефти, чтобы затем применить их в других странах. Эта компания, 34% акций которой принадлежит государству, обладает правами на разработку месторождений в Индонезии, Ираке и Канаде.
3 октября 2012 года в Японии добыли первую нефть. Разработка первого в Японии месторождения горючего сланца велась Japex долгое время. Объем запасов месторождения в Аките равен примерно 5 млн баррелей, что, в принципе, немного. Однако для Японии это составляет около 10 % годовой потребности.
Тестовое бурение проводилось на месторождении «Аюкава», в городе Юрихонджо в префектуре Акита, в северо-западной части острова Хонсю. Залежи сланцевой нефти были обнаружены на глубине 1,8 тысячи метров. Чтобы добраться до нефтеносного слоя компания вливала в горную породу кислоты, размягчающие камень. Это было необходимо для последующего бурения...

В Австралии:

По данным МЭА, технически извлекаемые запасы нефти из сланцев (shale oil) в Австралии составляют 1,64 млрд. т нефти. На данный момент в стране действуют три проекта по добыче нефти из сланцевых плеев. Проект расположен на месторождении Стюарт, неподалеку от города Гледстоун. Стоит отметить, что это месторождение действует с 1970-х годов. Актив неоднократно перепродавался различным инвесторам и закрывался по требованию Greenpeace в связи с неблагоприятной экологической обстановкой.

«Вторую жизнь» проект получил в 2008 году, после того как у канадских компаний была закуплена и внедрена технология добычи сланцевой нефти, однако в том же году он попал под действие двадцатилетнего экологического моратория, запрещавшего добывать нефть из сланцевых плеев штата Queensland. С 2008 по 2011 год проект бездействовал, добыча не велась. Только после вмешательства Федерального Правительства Австралии местные власти разрешили продолжить проект и в начале 2011 года отменили мораторий на разработку сланцевых месторождений.

Правительство кладет деньги себе в карман и заявляет, что сможет сделать Австралию полностью энергетически независимой.

Вообщем сланцевой нефти в мире очень много. Огромные запасы, кроме выше перечисленных разведаны в Тасмании, ЮАР, Аргентине, Украине, Эстонии, Бразилии и других странах.

Основные проблемы для экологии и жителей:

Добыча нефти сланцевых плеев при современном уровне технологий связана с огромным уровнем расхода воды, так для добычи 1 барреля нефти требуется от 2 до 7 бар воды (от 317,8 до 1112,3 л).

Загрязнение воды происходит несколько раз, во первых используется чистая вода из окрестных водоемов или привозная, которую смешивают с химикатами, во вторых из скважины нефть поступает вместе с водой которой там до 70% . Эта вода также загрязняется не только нефтью, но и водой смешанной с химикатами, что привезли, ну и на закуску наша адская смесь по трещинам поступает в артезианскую воду или даже выше, в грунтовые воды, убивая либо отравляя все живое...

Важным аспектом экологического влияния нефти сланцевых плеев является высокая энергоемкость процесса их извлечения. По оценкам компании RAND Corporation от 2005 года, добыча 100 тыс. барр./сут требует строительства электростанции мощностью в 1200 МВт, которой было бы достаточно, что бы снабдить энергией свыше 300 тыс. домохозяйств в США.

Немаловажным фактором являются и значительные выбросы парниковых газов при разработке сланцевых месторождений. Энергетический институт Колорадо в тесном сотрудничестве с правительством США представил результаты расчетов, согласно которым инфраструктура добычных проектов, рассчитанных на добычу 90 млн т в год, будет производить одновременно более 350 млн т углекислого газа в год. Это составляет около 5 % от текущих годовых выбросов парниковых газов США (7,26 Гт CO2).

После гидроудара метан и химические реактивы попадают в водяные пласты, а затем в водопровод. В процессе добычи используется большое количество воды, которая потом не очищается. Выбросы метана в атмосферу влияют на усиление «парникового» эффекта.

Ну и главное: запасы чистой пресной воды снижаются во всем мире стремительными темпами. Чистая пресная вода - вот главный ресурс, и без нее человечеству будет крайне тяжело выжить.

В Великобритании добыча сланца привела к серии землетрясений в районе одного из курортных городков. По экологическим соображениям приостановлена добыча в трех американских штатах и двух канадских провинций.

Но дальше всех пошла Франция. В июле 2011 французское правительство приняло решение о запрете на разработки сланцевых месторождений газа и нефти методом ГРП и аннулировало все ранее выданные лицензии. Прогнозируется разработка аналогичной директивы уже на уровне ЕС.

2024 logonames.ru. Финансовые советы - Портал полезных знаний.