Возникновение и развитие отечественного станкостроения. История развития станкостроения Что производит станкостроение

В середине XVIII столетия человеческая цивилизация вплотную приблизилась к одному из наиболее значимых этапов своего развития - периоду, который историки впоследствии назовут промышленной революцией, или Великим индустриальным переворотом. К этому времени в наиболее развитых странах мира, список которых тогда возглавляла подпитываемая многочисленными колониями Англия, начался активный процесс перехода от преимущественно аграрного устройства экономики к индустриальному. Зарождающийся промышленный капитализм обусловил потребность в повышении производительности труда, а также улучшении качества и снижении себестоимости продуктов производства.

Данным преобразованиям способствовало множество факторов: развитие торговли и формирование рынка наемного труда, становление банков и системы кредитования, эволюция права и расцвет точных наук, рост количества изобретений и технических новаций. Примитивный ручной труд и деревянные орудия труда уже не могли обеспечить потребности общества. Фабрики и мануфактуры остро нуждались в механизмах и машинах, изготовленных из металла. Именно быстро прогрессирующая металлообработка сыграла особую роль в успехе промышленной революции XVIII - XIX столетий.

Металлообработка, как основа фабричног о производства машин и механизмов

До начала индустриального переворота технологии обработки металлов путем резания, сверления и шлифовки совершенствовались крайне медленно, и эта работа носила разрозненный характер. В мануфактурный период потребность в новых инструментах подвигла владельцев фабрик к созданию вспомогательных мастерских, оборудованных элементарными сверлильными, точильными и шлифовальными станками. Часть из них приводилась в действие мускульной силой, другие - энергией воды. Но общим для всех этих приспособлений была минимальная степень механизации процесса обработки, что обуславливало низкое качество изделий.

В начале XVIII века изготовление деталей на станке выполнялось рабочим, который был вынужден удерживать обрабатывающий инструмент в руке. К сожалению, мировая техническая общественность тогда не узнала об изобретении талантливого русского механика А.К.Нартова - суппорте резцедержателе, которым он еще в 1717 году оснастил построенный им же токарный копировальный станок. В России тех лет данная разработка, как и многие другие изобретения этого талантливого «начальника» придворной токарни и воспитанника царя реформатора Петра I, была не востребована, и на время забыта.

Только ближе к концу столетия конструкция Нартова была изучена и стала отправной точкой для создания управляемого механического суппорта английским механиком и изобретателем Генри Модсли. После этого события устройство почти всех основных видов станков, применявшихся в мануфактурах и на фабриках, подверглось основательной модернизации. До этого токарные работы выполнялись при помощи примитивных держателей резца, что не позволяло обеспечить необходимую точность обработки. С появлением управляемого суппорта данная проблема была окончательно устранена.

«Социальный» заказ и потребность фабрик в новых, воплощенных в металле средствах производства, всячески стимулировали развитие способов металлообработки. Эта востребованность стала реальным катализатором процессов индустриализации, и привела к созданию новой отрасли промышленного производства - машиностроения. Однако, для того чтобы в полной мере удовлетворить технические запросы быстро развивавшегося общества, машиностроению предстояло совершить качественный технологический прорыв.

Важнейшие разработки и изобретения эры индустриального переворота


1.Токарный станок

В Англии революционные преобразования экономики начались с бурного прогресса в текстильной промышленности. Обеспечить эту отрасль новыми, более производительными машинами удалось благодаря не менее быстро развивавшимся технологиям и совершенствованию методов металлообработки. Спрос обеспечил быструю эволюцию средств производства, и, в первую очередь, одного из основных на то время технических средств обработки металлов резанием - токарного станка. На протяжении XVIII - XIX столетий конструкция токарного станка претерпела множественные усовершенствования, среди которых следует особо отметить следующие:

● 1712 г. Изобретение российским механиком Андреем Константиновичем Нартовым самоходного суппорта, обеспечившего возможность фиксированного крепления резца и его точного линейного перемещения вдоль обрабатываемой детали.

●1718 - 1729 г.г. Совершенствование А.К.Нартовым устройства токарного станка - копира, в котором траектория хода привода суппорта и передвижение копировального пальца управлялись различными участками ходового винта с отличающимися параметрами нарезки.

● 1751 г. Первый в мире полностью металлический токарный станок универсального типа от француза Жака де Вокансона. Его отличала тяжелая станина, мощные, изготовленные из металла центры, и V-образные направляющие.

● 1778 г. Новые типы винторезных станков авторства английского механика Д. Рамедона. Для изготовления резьбы с тем или иным шагом, в одном из них применялись сменные шестерни, в другом за движение резца отвечала специальная струна, которая наматывалась на вал определенного диаметра.

● 1795 г. Усовершенствованный французским механиком Сено функционал винторезного станка. Помимо уже применявшихся в станках Рамедона сменных шестерен и большого ходового винта, очевидным отличием данной разработки стал оригинальный конструктив механизированного суппорта.

● 1798 - 1800 г.г. Совершенная модель универсального токарного станка, построенная английским инженером Генри Модсли и его учениками. Данная конструкция стала прообразом токарно-винторезных станков будущего, и во многом определила направление развития данного вида металлообрабатывающего оборудования на сто, и более лет вперед. Кроме того, Г. Модсли первым начал процесс стандартизации резьбовых соединений.

● 1815 - 1826 г.г. Работы учеников и последователей Генри Модсли - Р.Робертса и Д.Клемента. Первому из них удалось улучшить станки за счет оптимального расположения ходового винта, создать элементарный вариатор в виде зубчатого перебора и сделать более удобным управление, вынеся все переключающие органы ближе к рабочему месту токаря. Д.Робертсу историки станкостроения приписывают создание лоботокарного станка, позволившего обрабатывать детали крупных диаметров.

● 1835 г. Важнейшая доработка механизма подачи токарных станков британским инженером-механиком и изобретателем Джозефом Витуортом - еще одним учеником Г.Модсли. Он разработал механизм поперечной передачи и связал его с продольным приводным механизмом.

● 1845 г. Автоматизированный револьверный станок американского инженера С.Фитча, предложившего прототип револьверной головки с восемью закрепленными в ней сменными резцами. Быстрая смена режущих инструментов снизила до минимума потери времени на их переустановку, и резко повысила производительность труда при обработке серийных изделий.

● 1873 г. Создание прообраза металлорежущего токарного станка автомата американским инженером и предпринимателем Х.Спенсером, который усовершенствовал конструкцию разработанных его предшественниками револьверных станков. Важной новацией авторства Х.Спенсера стала модернизированная система управления с использованием кулачкового механизма и распределительного вала.

● 1880 - 1895 г.г. Начало мелкосерийного выпуска токарных систем фирмы «Кливленд» и металлорежущего оборудования других производителей, построенного по принципу многошпиндельного станка автомата. Достигнутое таким образом расширение функциональных возможностей позволило реализовать давнишнюю мечту разработчиков промышленного металлорежущего оборудования - за счет совмещения различных операций многократно повысить производительность и экономическую эффективность работы станочного парка.

2.Фрезерный станок

Обтачивая вращающуюся деталь, невозможно выполнить обработку продольных и наклонных плоских поверхностей, а также устройство всевозможных пазов, канавок, подсечек, сплошных «карманов» и окон. Закрепив неподвижно деталь, и сделав подвижным вращающийся режущий инструмент, человечество открыло для себя фрезерные работы еще в XVII веке, когда китайские мастера изготовили достаточно примитивный станок, тем не менее, позволивший обработать крупную плоскую деталь для астрономического прибора.

Однако обеспечить точную работу механизма подачи вращающейся фрезы, достаточную для выполнения мелких работ по металлу, оказалось значительно сложнее, чем управлять суппортом с неподвижно закрепленным резцом в токарном станке. Разнообразные конструкции для фрезерования плоских поверхностей, разработанные в XVII веке, годились только для обработки изделий из дерева или кости. Многочисленные попытки создать станок для фрезерования металлических деталей успехом в то время не увенчались.

В полной мере решить эту задачу смог американский промышленник и инженер Илай Уитни, который в 1818 году построил полноценный фрезерный станок с механизированным суппортом, длительное время применявшийся на принадлежавшем ему оружейном заводе. Несмотря на наличие деревянной станины, деревянного двухступенчатого шкива и кустарный внешний вид, фрезерный станок конструкции Илая Уитни успешно справился со всеми возложенными на него функциями, и работал практически без поломок.

Заслуживают нашего внимания конструкции специализированных фрезерных станков, разработанных российскими механиками для оружейного завода в Туле. Уже к 1826 году там были сданы в эксплуатацию два станка для подрезки казенных концов ружейных стволов. Закрепленный в специальном подвижном приспособлении, ствол подавался в рабочую зону торцовой фрезы, Конструктивно и по внешнему виду изготовленные тульскими мастерами станки были совершеннее изделий Илая Уитни, и обеспечивали более высокое качество обработки поверхности деталей.

В первой половине XVIII века технический прогресс в области совершенствования конструкций и функциональных возможностей фрезерных станков был связан с потребностями оружейников. Очередной и более совершенный, чем разработки предшественников, прототип фрезерного станка в 1835 году был изготовлен механиками американской оружейной компании «Гай, Сильвестр и Ко». Отличительной особенностью данной конструкции стала уникальная система перемещения фрезы в вертикальной плоскости, которая впоследствии была преобразована в более надежный механизм подъема стола.

В середине XVIIIвека возможности фрезерных станков наконец-то были востребованы «мирными» предприятиями, которые уже вовсю работали на нужды индустриальной революции, и вынуждены были обрабатывать плоские поверхности шлифованием. Первой разработкой гражданского назначения стал станок английской компании «Нэсмит и Гейскелл», который выполнял фрезерование плоских граней гаек. Несмотря на узкую специализацию, это устройство, по сути, являлось универсальным горизонтально-фрезерным станком, и вполне могло применяться на множестве других операций.

Еще более совершенную конструкцию фрезерного станка в 1855 году разработала и воплотила в металле американская компания «Линкольн» (Phoenix Iron Works Джорджа Линкольна). Рабочий стол этого изделия, как и у предшественников, приводился в движение ременной передачей и червячным механизмом, но для продольного перемещения стола здесь был применен ходовой винт с маховиком. Установка фрезы в вертикальной плоскости выполнялась в данной конструкции перемещение подшипников оправки, что также стало определенной технической новацией, обеспечившей удобство и повысившей точность работы. Схема станка стала классической и была заимствована многими производителями фрезерного оборудования.


История создания этого популярного станка и его широкого распространения тесно связана с именами людей, которые впоследствии основали всемирно известную и в наши дни компанию. Фрэнсис Пратт, создатель «Линкольна», работал начальником производства в Phoenix Iron Works вместе с Эмосом Уитни (родственником родоначальника фрезерного оборудования Илая Уитни). Оба были талантливыми механиками и изобретателями и в 1860 году основали Pratt & Whitney Company, специализирующуюся на выпуске металлообрабатывающего оборудования. В годы Гражданской войны в США компания существенно разрослась и станки под этой маркой стали продаваться по всему миру. В настоящее время Pratt & Whitney- крупнейший поставщик газотурбинных двигателей и генераторных установок.

3.Паровой двигатель Уатта - востребованный привод станочного оборудования

Приводимые в действие силой ветра или падающей воды токарные, сверлильные и фрезерные станки не могли в полной мере обеспечить необходимые параметры вращения заготовок или инструментов, что существенно сказывалось на качестве обработки металлов. Чтобы организовать фабричный выпуск новых машин и других средств производства, требовался мощный движитель, который смог бы с необходимой скоростью и силой приводить в действие механизмы станочного оборудования. Таким двигателем стала созданная шотландским инженером, механиком и изобретателем Джеймсом Уаттом универсальная паровая машина.

Оригинальную конструкцию «парового насоса» в 1698 году разработал и изготовил Томас Сэвери, который в том же году запатентовал свое изобретение и применил его для откачивания шахтных вод. По причине низкой производительности и большого расхода топлива использовать этот двигатель в качестве привода агрегатов станочного оборудования было невозможно. Данную конструкцию, начиная с 1705 года, пытался улучшить другой англичанин - Томас Ньюкомен. Он довел построенный на ее основе водоподъемный насос до мелкосерийного производства, однако из-за недостаточной мощности для применения в промышленности этот двигатель также не подходил.

Свой вариант парового двигателя научный консультант университета в Глазго Джеймс Уатт разработал в 1764 году. Но только спустя 12 лет, когда его партнером стал состоятельный промышленник Мэтью Болтон, изобретателю удалось организовать производство и коммерческую продажу изготовленных паровых машин. Именно Уатт сумел преобразовать поступательное движение поршней своих машин во вращение нагрузочного выходного вала. Начальная конструкция потом многократно дорабатывалась и становилась все более мощной и экономичной. Но главное было сделано - в конце XVIII века металлорежущие станки получили такой необходимый, и не зависящий от природных явлений, автономный привод.

Дальнейшее развитие металлообрабатывающих станков


Индустриальная революция обусловила необходимость в разработке и выпуске машин практически для всех отраслей промышленного производства. От уровня развития средств металлообработки зависело состояние экономики, поэтому техническая база станкостроения непрерывно совершенствовалась. Конструкция механического суппорта, первично разработанная для крепления и управляемого перемещения резцов токарного станка, была с успехом применена в других видах станочного оборудования.

Для создания новых металлообрабатывающих устройств применялся не только механический суппорт, но и другие конструктивные узлы токарного станка - система зубчатой передачи, механизм подачи, зажимные устройства и элементы кинематики. Многочисленные американские машиностроительные заводы, которые к середине XIX века в техническом развитии обогнали родоначальников станкостроения - англичан, массово выпускали шлифовальные, расточные, токарно-револьверные, универсально-фрезерные и карусельные станки, ставшие со временем основой промышленного расцвета и мощи США.

В 60-е годы XIX века машиностроение начало стремительно развиваться в Германии и России. В нашей стране одним из пионеров станкостроения стал Тульский оружейный завод, который для собственных нужд начал выпуск токарных, фрезерных, сверлильных, резьбонарезных, шлифовальных, протяжных и шлифовальных станков. Успешно начали работу машиностроительные предприятия, построенные в Москве, Ижевске, Сестрорецке, Воронеже и Санкт-Петербурге. Первым специализированным предприятием станкостроения стал московский завод братьев Бромлей, позднее переименованный в «Красный Пролетарий».

Российские заводы быстро освоили производство всего необходимого ассортимента станочного оборудования, включая оригинальные собственные разработки продольно-строгальных и колесотокарных станков. Несмотря на эти очевидные успехи, общий уровень российского станкостроения тех лет существенно отставал от количественных и качественных показателей машиностроительных отраслей Англии, США и Германии, поэтому основная масса станочного оборудования для заводов и фабрик России приобреталась их владельцами за рубежом. Типовым оснащением металлообрабатывающих предприятий того времени были станки шести видов:

Токарные , на которых обтачивали наружные и внутренние поверхности тел вращения, выполнялась обработка гладких и ступенчатых валов, изделий в форме шара или конуса, растачивались цилиндрические детали и нарезалась резьба.

● Фрезерные станки , позволявшие обрабатывать внешние и внутренние поверхности заготовок деталей сложной формы, к которым предъявлялись повышенные требования по точности и качеству.

Строгальные станки горизонтального и вертикального типа, предназначенные для обработки заготовок и изделий с плоскими поверхностями.

Сверлильные станки , при помощи которых высверливались, растачивались и обрабатывались отверстия, а также могли нарезаться резьбы.

Шлифовальные машины, на которых производилась чистовая обработка изделий специальным абразивным инструментом и материалами.

● Станки специального назначения , разработанные и изготовленные для выполнения ограниченного количества или одной конкретной операции технологического процесса.

В конце XIX века металлообрабатывающее оборудование всех основных групп дифференцировалось, и выпускалось в виде универсальных станков, либо машин специального назначения. Действительно, зачем тратиться на сложный и дорогой станок, если он будет использоваться для выполнения всего нескольких однотипных операций. К примеру, так появилось специальное расточное оборудование, применявшееся для изготовления стволов орудий и обработки любых других изделий цилиндрической формы и большой длины.

При попытке приспособить токарный станок к работе с заготовками малой длины и значительных диаметров была разработана конструкция лоботокарного станка. Подобным образом, под конкретную задачу, появились токарно-карусельные станки для обработки заготовок большого веса и размера, с которыми не могло работать оборудование стандартного исполнения. Для обработки крупногабаритных изделий были разработаны конструкции радиально-сверлильных и продольно-строгальных станков с длинными подвижными столами.

Наивысшим достижением станкостроительной отрасли конца XIX века стали станки токарно-револьверного типа, оборудованные головками для одномоментной установки до 16 инструментов, а также карусельно-фрезерное оборудование, позволявшее вести обработку сразу нескольких изделий крупного веса и размеров. Не менее востребованными стали все специализированные машины, предназначенные для нарезки зубьев и обработки зубчатых колес - станки зубофрезерного, зубодолбежного и зубострогального типа.

На рубеже XX века конструкторы и инженеры механики считали, что дальнейшее развитие станочного оборудования для металлообработки должно быть связано с автоматизацией, дальнейшим повышением точности и скорости выполнения операций. Огромное значение для будущего отрасли имело изобретение американскими инженерами Уайтом и Тэйлором высоколегированной «быстрорежущей» стали для изготовления резцов и других металлорежущих инструментов. Однако открывшимися в связи с этим изобретением возможностями обработки металлов на повышенных скоростях станкостроители смогли в полной мере воспользоваться уже в XX веке.

Избранные персоны промышленной революции

Основой любых прогрессивных изменений в жизни общества, будь то социальные, экономические или технологические преобразования, являются конкретные личности. Кроме потребностей общества в совершенствовании технического базиса производства, необходимым условием индустриальной революции стала созидательная деятельность множества талантливых людей - станочников, механиков, изобретателей и инженеров конструкторов.

Именно они, дополняя и совершенствуя разработки друг друга, создали в итоге станочный парк, который позволил наладить производство необходимого количества новых и более совершенных средств производства. Для примера перечислим хотя бы нескольких «действующих лиц» индустриальной революции, не забыв и о наших великих соотечественниках, также внесших свой весомый вклад в практику и теорию металлообработки:

● А.К.Нартов - выходец из народа, начавший карьеру токарем дворцовой мастерской Петра I, и закончивший свой земной путь в генеральском чине статского советника. После обучения за границей, молодой заведующий придворной «токарней» Андрей Нартов еще в 1717 году предложил конструкцию механизированного суппорта токарного станка. Впоследствии А.К.Нартов детально разработал механизмы еще 34 станков, но после его смерти рукописи попали в придворную библиотеку, и были найдены потомками только через 200 лет.

● Генри Модсли - английский механик, который увековечил свое имя созданием в 1794 году совершенной конструкции крестового механического самоходного суппорта. Он же в 1798 году при разработке токарно-винторезного станка применил сменный ходовой винт, и впервые предложил стандартизовать все резьбовые детали и соединения. Кроме того, Генри Модсли известен тем, что обучил и воспитал на собственном заводе целую плеяду учеников, каждый из которых продолжил дело учителя и внес собственный вклад в дальнейшее развитие средств металлообработки.

Джозеф Витуорт . Этот британский инженер и предприниматель вошел в историю не только усовершенствованием конструкции поперечной передачи токарного станка. Впоследствии Д,Витуорт стал промышленником, построил собственный механический завод, а главное - еще в 1841 году предложил принципы унификации деталей машин и стандарты винтовой резьбы, которые носят его имя и применяются поныне. Он же является автором системы калибров, которую разработал и вместе с особо точными измерительными приборами ввел в практику работы своего завода, показав тем самым пример станочникам всего мира.

● И.А.Тиме - российский ученый и инженер механик, впервые изучивший и осветивший в своих трудах процессы, которые происходят при механической обработке металла. Изучая параметры образования стружки при различных скоростях подачи и резания, он смог установить важные закономерности, позволившие ему в 1870 году опубликовать рекомендации по настройке оптимальных режимов работы металлорежущих станков.

● К.А.Зворыкин - выпускник Санкт-Петербургского механического технологического института, впоследствии профессор. Константин Алексеевич Зворыкин продолжил изыскания И.А.Тиме и опубликовал труды, посвященные проблемам оптимального резания металлов, в которых привел уточненную схему усилий, воздействующих на резец. В 1883 году К.А.Зворыкин создал прибор, позволявший определить силу резания, и вывел формулу, по которой можно было рассчитать наиболее эффективные режимы работы станка.

Фредерик Тэйлор - американский инженер, в течение 26 лет изучавший процессы резания металлов резцами различной формы, под различными углами и на всех возможных скоростных режимах. Он выявил закономерности, влияющие на качество обработки, затраты времени, толщину стружки, параметры охлаждения и стойкости резцов. В результате он практическим путем установил самые выгодные режимы металлообработки, и в 1884 году создал на основе своих исследований специальную счетную линейку рабочего - станочника, по которой можно было определить оптимальный режим резания. Работы Ф.Тейлора имели неоценимое значение для совершенствования способов металлообработки, и с благодарностью были приняты профильными специалистами всего мира.

Российское станкостроение на пороге XX века

Индустриальная революция в России, с ее преимущественно аграрным укладом экономики, запоздала почти на столетие. Однако, начавшись в середине XIX столетия, за достаточно короткий по историческим меркам период в 50 лет промышленная революция подвергла всю производственную и социально-экономическую сферу российского государства необратимой реформации. После отмены крепостного права в стране окончательно утвердился капитализм и присущие ему рыночные отношения, быстро шли процессы накопления капитала и создания промышленных предприятий. Как сто лет назад в Англии, внедрение высокопроизводительных машин началось на фабриках хлопчатобумажной промышленности.

По данным статистики, к началу 1900 года в России начитывалось 1805 предприятий машиностроения и металлообработки, оснащенных 2966 механическими двигателями. Общее количество и видовое разнообразие металлорежущих станков история, к сожалению, не сохранила. В то же время на 185 ткацких фабриках применялось более 150 тысяч механических ткацких станков, многие из которых были изготовлены на отечественных машиностроительных предприятиях. Российское станкостроение, хотя значительно отставало от уровня ведущих стран мира, развивалось поистине семимильными шагами. К концу XIX века по уровню оснащенности промышленных предприятий металлообрабатывающими станками Россия вышла на среднемировые показатели.

Станкостроение, ведущая отрасль , создающая для всех отраслей народного хозяйства металлообрабатывающие и деревообрабатывающие станки, автоматические и полуавтоматические линии, комплексно-автоматического для изготовления машин, оборудования и изделий из металла и др. конструкционных материалов, кузнечно-прессовое, литейное и деревообрабатывающее оборудование.

Появление металлорежущих станков связано с развитием крупного капиталистического , с первых предприятий типа. Широкое распространение машин-орудий, а затем и паровых машин требовало повышения точности обработки деталей. Эта задача могла быть решена только с машин для производства машин и в первую очередь металлорежущих станков с механическим суппортом. Создание механического суппорта относится к началу 18 в. Русский . К. в 1738 построил первый в мире станок с механическим суппортом и набором сменных зубчатых колёс. Нартов и др. мастера (М. Сидоров-Красильников, Станкостроение Шелашников, Я. Батищев) сконструировали в 18 в. ряд металлорежущих станков (станки для стволов пушек, различные агрегатные станки). Однако рус. мастеров не могли получить широкого применения и известности, т.к. потребность феодально-крепостнической России в небольшом машин (главным образом для изготовления вооружения) обеспечивалась отдельными небольшими заводами.

Специальный карусельный станок для черновой и чистовой обработки крупногабаритных деталей из стали, чугуна, цветных металлов и их сплавов. Модель КУ-299.

В Великобритании в конце 18 в. сложились благоприятные условия для развития машинного машин. К 1790-м гг. относятся работы английского Г. по созданию станка с механическим суппортом. Механический суппорт, перенесённый с токарного на др. металлорежущие станки, положил начало станкам с развитым исполнительным .

В дальнейшем основные типы металлорежущих станков были сконструированы в Германии, Франции и других странах; над их созданием работали многие изобретатели. Так, например, в 1820-30-х гг. американец Э. Уитни разработал для оружейных заводов Кольта несколько конструкций , в 1829 патент на был выдан на имя Дж. Несмита, владельца крупных английских машиностроительных заводов, в 1861 - патент на усовершенствованный фрезерный станок на имя американской фирмы «Браун и Шарп». Ко 2-й половине 19 в. были в основном разработаны модели фрезерных, револьверных, строгальных, долбёжных и др. станков, главным образом для удовлетворения нужд начавшегося ж.-д. и океанского . Станки получили известность под маркой выпускавших их крупнейших машиностроительных фирм «Витворт», «Несмит», «Селлерс», «Пратт»и др. В 1-й половине 19 в. ведущую роль в мировом Станкостроение играла Великобритания; во 2-й половине 19 в. её опередили . В этот же период Станкостроение начало развиваться в Германии.

Горизонтальный сверлильно-фрезерно-расточный станок с ЧПУ и инструментальным мгазином. Модель 6906ВМФ2.

В России первым предприятием по металлообрабатывающих станков был завод Берда в Петербурге (1790). В 1815 стал выпускать оружейный завод. В 1824 в Петербурге был построен завод Илиса для изготовления паровых машин и станков. В конце 19 в. многие машиностроительные заводы наряду с др. продукцией производили станки. Весь выпуск металлорежущих станков в России в 1913 составил 1,8 тыс. штук, парк установленных станков в 1908 насчитывал 75 тыс. единиц. В общей массе поступающих в станков станков отечественного составлял всего лишь 16-24%, остальная часть приходилась на долю импорта.

За годы Советской власти Станкостроение было по существу создано заново. Осуществление принятого 14-м съездом ВКП (б) в декабря 1925 решения, определившего курс на народного хозяйства, потребовало первоочередного развития тяжёлой , отечественного и наряду с этим металлорежущих станков. В результате специальных правительственных мероприятий, проведённых в 1929-30, были созданы организационные предпосылки, необходимые для планового развития в специализированной станкостроительной промышленности. Образование «Станкотреста» 29 мая 1929 и явилось датой официального создания самостоятельной отрасли Станкостроение В 1930 на основе объединения станкостроительных и инструментальных трестов учреждено Государственное всесоюзное объединение станкоинструментальной промышленности «Союзстанкоинструмент». Для подготовки открыт (Станкин); организованы станкостроительные при МВТУ им. Н. Э. Баумана и Ленинградском политехническом институте им. М. И. Калинина. В целях создания научной и экспериментальной базы для развивающегося Станкостроение в 1931 в Москве был создан НИИ станков и инструментов (с 1933 - ). Впервые в СССР и в Европе ЭНИМС в 1934 разработал агрегатные многошпиндельные станки.

Реконструкция действующих предприятий и новых позволили увеличить производственные по выпуску металлорежущих станков в годы 1-й пятилетки (1929-32) в 2,5 раза. За годы 2-й пятилетки (1933-37) число станкостроительных заводов увеличилось в 1,8 раза, а выпуск станков возрос более чем в 2 раза. Объём союзного производства станков в 1937 в 33 раза превысил 1913. При этом увеличилось не только выпускаемых станков, но и расширилась их . Началось станков-автоматов и , шлифовальных и зубообрабатывающих, станков тяжёлого типа. В 1940 общее количество освоенных типоразмеров выпускаемых станков превысило 320.

В течение трёх довоенных пятилеток построено большое новых станкостроительных заводов, в том числе Краматорский тяжёлого станкостроения, Киевский станков-автоматов, Харьковский радиально-сверлильных станков, «Станколит» и др. К 1941 в имелось 37 специализированных станкостроительных заводов.

В период Великой Отечественной войны 1941-45 Станкостроение было переведено на выполнение заказов оборонной . Организация массового боеприпасов, боевых машин, артиллерийского и др. вооружения потребовала создания новых специализированных, агрегатных и упрощённых операционных станков. На ряде заводов начали применяться поточные методы производства. В годы войны построены крупнейший завод «Тяжстанкогидропресс» им. А. И. Ефремова, Стерлитамакский завод им. В. И. Ленина.

В 1950, к концу 4-й пятилетки, было выпущено 70,6 тыс. металлорежущих станков. За 1946-50 освоено около 250 новых типов металлорежущих станков общего назначения, более тысячи типоразмеров специальных и агрегатных. Начато автоматических линий из агрегатных станков. В 1946 была изготовлена первая для обработки головки трактора . В 1950 пущен автоматический завод по изготовлению поршней.

К 70-м гг. созданы крупные центры Станкостроение с первоклассными заводами, многочисленными КБ, научно-исследовательскими в союзных . Так, например, в Литов. ССР созданы комплекс заводов по производству прецизионных станков, филиал НИИ станкостроения () с опытным производством, проектного «Гипростанок»; в Армянской ССР имеется ряд станкостроительных, инструментальных заводов, действуют филиал НИИ станкостроения, а также проектно-технологический институт. Об увеличении выпуска металлорежущих станков см. данные табл. 1. Табл. 1. - металлорежущих станков в СССР

Годы

в современных границах СССР

Снизилась доля импорта металлорежущих станков в к концу 1966 она составляла 3% против 10% в 1938. Технический Станкостроение характеризуется прежде всего качественными изменениями в структуре выпуска, совершенствованием технических металлорежущих станков.

В годы 8-й пятилетки (1966-70) в результате осуществленных мер по совершенствованию управления отраслью и предприятиями, их техническому перевооружению, улучшению и труда значительно возросла эффективность . Фондоотдача в целом по станкоинструментальной увеличилась на 9%, за счёт роста производительности труда получено почти 80% всего прироста объёма производства. Выпуск автоматических и полуавтоматических линий для и металлообработки в 1970 составил 579 комплектов и возрос по сравнению с 1965 более чем в 2,5 раза (см. табл. 2).

Координатно-расточный станок одностоечный особо высокой точности с ЧПУ. Модель 2Д450АФ2.

На начало 1971 типаж освоенных тяжёлых и станков составил 450 типоразмеров (около 28% в общем типаже). Широк и размерный типажа выпускаемых станков. Большая часть создаваемых тяжёлых станков конструируется в пределах заранее определённых унифицированных гамм. Они имеют общие конструктивные решения и связаны системой широкой унификации узлов и деталей.

В 8-й пятилетке получили большое развитие научно-исследовательские и конструкторские работы по созданию современных металлорежущих станков с числовым управлением (ЧПУ). Успехи, достигнутые за последние 10-15 лет в развитии , в создании систем управления механизмами, позволили приступить к освоению станков с программным управлением, которые становятся одним из основных видов станков, позволяющих автоматизировать технологические процессы на предприятиях с индивидуальным, мелкосерийным и серийным . В 1970 их было произведено 1588 против 16 в 1960, в 1974-4410 шт. За 4 года 9-й пятилетки (1971-1975) освоено и поставлено на около 60 новых моделей станков с ЧПУ, в том числе более 40 моделей станков с автоматической сменой . Широкий принимают работы по созданию автоматизированных участков металлорежущих станков с ЧПУ с групповым программным управлением для комплексной механической обработки однотипных деталей. Например, и его опытным заводом создан участок, укомплектованный станками с ЧПУ для обработки широкой деталей типа тел (валы, фланцы, втулки, диски) с централизованным управлением от ЭВМ и автоматизированной подготовкой программ. Для решения задач по ускоренному развитию производства металлорежущих станков с ЧПУ в Станкостроение осуществляется ряд мероприятий, в частности на отдельных заводах организуется станков с ЧПУ, большинство наиболее квалифицированных станкостроительных заводов привлечено к производству таких станков. Широкое применение получили металла, всё шире используется размерная обработка световым лучом. Эти методы иногда дополняют, а в ряде случаев полностью заменяют обработку деталей резанием и . Разработаны и выпускаются электроискровые станки для точной обработки небольших деталей и для вырезки фасонных контуров проволочным ; - для трёхкоординатной обработки фасонных деталей; анодно-механические, электроконтактные - для обработки слитков из специальных сталей и др. работ; светолучевые станки - для получения отверстий диаметром от 0,03 до 0,5 мм в любых материалах; - для обработки твёрдых и крупных материалов; электрохимические станки и др. Внедрение их в позволяет добиться существенного технического в отдельных . Использование луча и для обработки алмазных волок и фильер позволило решить комплексной обработки этих изделий, в результате чего продолжительность их черновой обработки сократилась с десятков часов до нескольких минут, а продолжительность финишной - в 4-5 раз.

Участок станков с программным управлением. Модель АП-1.

В 70-е гг. в Станкостроение проводится работа по созданию и внедрению в новых унифицированных гамм станков. В типаже на 1971-75 установлена 51 гамма, включающая 277 базовых и 682 унифицированных моделей станков. Все станки гамм аналогичного технологического назначения проектируются по принципу конструктивного подобия, что создаёт возможность для широкой их унификации, позволяет создавать специализированные производства.

Продольный строгально-расточный станок. Модель НС-32.

Развитие конструкций станков и автоматических комплексов в ближайшей будет осуществляться в следующих направлениях: полный от станков неавтоматического действия к станкам-полуавтоматам и автоматам; расширение применения программного управления и вычислительной техники в конструкциях всех основных видов металлорежущих станков, в автоматических и полуавтоматических линиях; создание участков из станков с программным управлением, обрабатывающих центров; создание комплексных автоматических линий, участков, цехов и заводов-автоматов, управляемых от ЭВМ, для отраслей с крупносерийным и массовым выпуском изделий; и создание конструкций роботов, встраиваемых в автоматические линии, в комплексы автоматизированных в др. виды оборудования для массового производства.

Автоматическая линия. Модель ЛМ-423.

На основе достигнутых темпов развития и масштабов в Станкостроение в создан значительный производственно-технический в виде наличного парка металлорежущих станков. Динамика развития парка станков, снижение их возрастного состава и изменение качественной структуры - результат работы сов. Станкостроение, обеспечивающего материально-техническую базу и металлообработки. Это позволило сов. Станкостроение занять одно из ведущих мест в мире по производству широкой современных металлорежущих станков для самых разнообразных народного хозяйства.

Успешно развивается Станкостроение и в других социалистических странах (см. табл. 3).

Горизонтальный сверлильно-фрезерно-расточный станок с ЧПУ и автоматической сменой инструмента. Модель 2Б622ПМФ2 (2А622Ф4).

КЛАССИФИКАЦИЯ И СИСТЕМА ОБОЗНАЧЕНИЯ СТАНКОВ 3

ШЛИФОВАНИЕ 6

ИНСТРУМЕНТ, ПРИМЕНЯЕМЫЙ ПРИ ШЛИФОВАНИИ 6

КОМПОНОВКА МЕХАНИЧЕСКИХ ЦЕХОВ 9

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 15

КЛАССИФИКАЦИЯ И СИСТЕМА ОБОЗНАЧЕНИЯ СТАНКОВ

Металлорежущие станки в зависимости от вида обработки делят на девять групп (табл 1), а каждую группу - на десять типов (под­групп), характеризующих назначение станков, их компоновку, степень автоматизации или вид применяемого инструмента. Группа 4 предназначена для электроэрозионных, уль­тразвуковых и других станков.

Обозначение модели станка состоит из со­четания трех или четырех цифр и букв. Первая цифра означает номер группы, вторая – номер подгруппы (тип станка), а последние одна или две цифры – наиболее характерные технологи­ческие параметры станка. Например, 1Е116 означает токарно-револьверный одношпиндельный автомат с наибольшим диаметром обрабатываемого прутка 16 мм; 2Н125 озна­чает вертикально-сверлильный станок с наи­большим условным диаметром сверления 25 мм. Буква, стоящая после первой цифры, указывает на различное исполнение и модер­низацию основной базовой модели станка. Буква в конце цифровой части означает моди­фикацию базовой модели, класс точно­сти станка или его особенности. Классы точности станков обозначают: Н – нормаль­ной; П – повышенной; В – высокой, А – осо­бо высокой точности и С – особо точные станки. Принята следующая индексация моде­лей станков с программным управлением: Ц – с цикловым управлением; Ф1 – с цифро­вой индексацией положения, а также с предварительным набором координат; Ф2 – с позиционной системой ЧПУ, ФЗ – с контурной системой ЧПУ; Ф4 – с комби­нированной системой ЧПУ. Например, 16Д20П – токарно-винторезный станок повы­шенной точности; 6Р13К-1 – вертикально-фре­зерный консольный станок с копировальным устройством; 1Г340ПЦ – токарно-револьвер­ный станок с горизонтальной головкой, повышенной точности, с цикловым про­граммным управлением; 2455АФ1 – коорди-натно-расточный двухстоечный станок особо высокой точности с предварительным набо­ром координат и цифровой индикацией; 2Р135Ф2 – вертикально-сверлильный станок с револьверной головкой, крестовым столом и с позиционной системой числового про­граммного управления; 16К20ФЗ – токарный станок с контурной системой числового йро» граммного управления; 2202ВМФ4 – многоце­левой (сверлильно-фрезерно-расточный) гори­зонтальный станок высокой точности с ин­струментальным магазином и с комбиниро­ванной системой ЧПУ (буква М означает, что станок имеет магазин с инструментами).

Станки подразделяют на широкоунивер­сальные, универсальные (общего назначения), специализированные и специальные.

Специальные и специализированные станки обозначают буквенным индексом (из одной или двух букв), присвоенным каждому заводу, с номером модели станка. Например, мод. МШ–245 – рейкошлифовальный полуавтомат повышенной точности Московского завода шлифовальных станков.

Таблица 1 – Классификация металлорежущих станков

Типы станков

Токарные

Автоматы и полуавтоматы

Токарноревольверные

Токарноревольверные автоматы

Карусельные

Токарные и лоботокарные

Многорезцовые и копировальные

Специализированные

Разные токарные

специализированные

одношпиндельные

многошпиндельные

Сверлильные и расточные

Настольно- и вертикальносверлильные

Полуавтоматы

Координатнорасточные

Радиально- и координатносверлильные

Расточные

Отделочнорасточные

Горизонтально сверлильные

Разные сверлильные

одношпиндельные

многошпиндельные

Шлифовальные, полировальные, доводочные, заточные

Круглошлифовальные, бесцентровошлифовальные

Внутришлифовальные, координатношлифовальные

Обдирочношлифовальные

Специализированные шлифовальные

Продольношлифовальные

Заточные

Плоскошлифовальные

Притирочные, полировальные, хонинговальные, доводочные

Разные станки, работающие абразивом

Электрофизические и электрохимические

Светолучевые

Электрохимические

Электроэрозионные, ультразвуковые прошивочные

Анодномеханические отрезные

Зубо- и резьбообрабатывающие

Резьбонарезные

Зубодолбежные для цилиндрических колес

Зуборезные для конических колес

Зубофрезерные для цилиндрических колес и шлицевых валов

Для нарезания червячных колес

Для обработки торцев зубьев колес

Резьбофрезерные

Зубоотделочные, проверочные и обкатные

Зубо- и резьбошлифовальные

Разные зубо- и резьбообрабатывающие

Фрезерные

Барабанно-фрезерные

Вертикально-фрезерные консольные

Фрезерные непрерывного действия

Продольные одностоечные

Копировальные гравировальные

Вертикальнофрезерные бесконсольные

Продольные двухстоечные

Консольнофрезерные операционные

Горизонтально-фрезерные консольные

Разные фрезерные

Строгальные, долбежные, протяжные

Продольные

Поперечнострогальные

Долбежные

Протяжные горизонтальные

Протяжные вертикальные для протягивания

Разные строгальные станки

одностоечные

двухстоечные

внутреннего

наружного

Разрезные

Отрезные, работающие

Правильно-отрезные

Ленточнопильные

Отрезные с дисковой пилой

Отрезные ножовочные

абразивным кругом

гладким или насечным диском

Трубо- и муфтообрабатывающие

Пилонасекательные

Правильно- и бесцентровообдирочные

Для испытания инструментов

Делительные машины

Балансировочные

ШЛИФОВАНИЕ

Шлифование- это процесс резания материалов с помощъю абразивного материала, режущими элементами которого являются абразивные зерна. Шлифование применяется как для черновой так и для чистовой и отделочной обработки.

При шлифовании главным движением является вращение режущего инструмента с очень большой скоростью. Чаще всего в качестве шлифовального инструмента используются шлифовальные круги. Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. Каждое абразивное зерно работает как зуб фрезы, снимая стружку.

Процесс резания при шлифовании имеет значительное отличие по сравнению с работой лезвийного инструмента. При вращательном движении круга, в зоне его контакта с заготовкой часть зерен срезает материал в виде очень большого числа тонких стружек (до 100 000 000 в минуту). Шлифовальные круги срезают стружки на очень больших скоростях- от 30 м/c и выше (порядка 125 м/c). Процесс резания каждым зерном осуществляется почти мгновенно. Обработанная поверхность представляет собой совокупность микроследов абразивных зерен и имеет малую шероховатость. Часть зерен ориентирована так, что не может резать обрабатываемую поверхность.

Такие зерна производят работу трения по поверхности резания. Абразивные зерна могут также оказывать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристалической решетки. Деформирующая сила вызывает сдвиг одного слоя атомов относительно другого. Вследствии упругопластического деформирования материала обработанная поверхность упрочняется. Но этот эффект оказывается менее ощутимым, чем при обработке металлическим инструментом.

Шлифование применяют в основном для заготовок из закаленных сталей. С развитием малоотходных технологий доля обработки металлическим инструментом будет уменьшаться, а абразивным увеличиваться.

ИНСТРУМЕНТ, ПРИМЕНЯЕМЫЙ ПРИ ШЛИФОВАНИИ

В промышленности находят применение как естественные, так и искуственные абразивные материалы.

К естественным абразивным материалам относятся алмаз, корунд, наждак и некоторые другие. Однако ввиду того, что свойства этих материалов нестабильны, а запасы их ограничины, основное применение в промышленности получили искуственные материалы. К искуственным абразивным материалам относятся электрокорунд, корборунд, карбид бора, синтетические алмазы и сверхтвердые материалы, полученые на основе кубического нитрида бора.

Электрокорунд представляет собой кристалический оксид алюминия Al 2 O 3 . В зависимости от содержания оксида алюминия различают три типа электрокорунда: нормальный электрокорунд (Э), содержащий до 95% Al 2 O 3, электрокорунд белый (ЭБ), содержащий 95-98% Al 2 O 3 , режущая способность которого значительно выше (на 30-40%), и монокорунд, содержащий 98-99% Al 2 O 3. Чем выше содержание кристалического оксида алюминия в электрокорунде, тем выше его режущие свойства. Электрокорунд применяется для шлифования сталей, чугунов и цветных металлов. Абразивные материалы из монокорунда предназначены для получитового и чистового шлифования деталей из цементированых, закаленных и высоколегированых сталей. Карбид кремния (карборунд SiC) по сравнению с электрокорундом обладает большей твердостью, но и хрупкостью. При дроблении его зерна имеют более острые кромки, что обеспечиват повышеную производительность обработки.

Карбид кремния выпускают двух марок. Карбид кремния черный (КЧ) содержит 95-97% SiC и применяется для обработки хрупких металлических материалов, цветных металлов и неметаллов. Карбид кремния, содержащий не менее 97% SiC, имеет зеленый цвет (КЗ) и обладает более высокими свойствами. Он премущественно используется для заточки твердосплавного режущего инструмента.

Карбид бора (B 4 C) отличается черезвычайно высокой прочностью, но очень хрупок и дорог. Используется в основном в виде несвязанных образивных зерен для доводки твердосплавного режущего инструмента, притирки, резки драгоценных камней и т.д..

Синтетические алмазы (СА) получают из графита (99,7%С и 0,3% примеси) в специальных камерах при давлении около 1,3 ГПа в присутствии катализатора и температурах 1200-2400 С. В зависимости от температуры получается различная форма кристаллов и окраска от черного цвета при низких температурах до светлого при высоких.

Синтетические алмазы имеют брльшую острату режущих кромок по сравнению с естественными и потому более производительны в качестве образивного инструмента. Алмаз имеет черезвычайно высокие режущие свойства, так как он является самым твердым веществом, обладает очень высокой теплопроводностью и износостойкостью, имеет малый коэффициент трения по металлу. Однако он недостаточно теплостоек (до 800С), что позволяет его использовать в соновном для обработки хрупких материалов, цветных металлов и неметаллов.

Кубический нитрид бора (КНБ)- эльбор, боразон и другие- синтетический сверхтвердый материал близок по твердости к алмазам, но имеет теплостойкость почти вдвое более высокую (до 1500С). Высокая теплостойкость и малое химическое сродство с железом позволяет успешно использовать его для обработки высокопрочных и закаленных сталей и сплавов на основе железа.

Зерна абразивных материалов являются режущими элементами абразивных инструментов.Основным видом абразиных инструментов являются шлифовальные круги, форма и размер которых определяет ГОСТ 2424-60, который предусматривает 22 пофиля с диаметрами от 3 до 1100 мм. Среди них наиболее часто применяются следующие формы: плоские прямые (ПП), плоские с выточкой (ПВ), чашечные цилиндрические (ЧЦ) и конические (ЧК), кольца (1К), тарельчатые (2Т) и т.д..

Все большее применение находит обработка с применением образивной ленты. Этот метод применяется для черновой, чистовой и отделочной обработки и во многих случаях обеспечивает значительное повышение производительности труда.

Свойства абразивных инструментов и их работоспособность будут определяться маркой абразивного материала, а также характеристиками инструмента: зернистостью абразива, видом связки, твердостью и структурой. По размеру абразивные зерна подразделяются на 26 номеров зернистости и делятся на шлифзерна(номера зернистости 200-16), шлифпорошки (номера 12-3) и микропорошки (номера М40-М5). Номер шлифзерна и шлифпорошка соответствуют размеру зерен в сотых долях миллиметра, а номер микропорошков показывает размер зерна в микрометрах.

Выбор зернистости абразивного инструмента определяется величиной припуска на обработку, чистотой обработанной поверхности и точностью обработки. Для грубой предварительной обработки и обработки вязких материалов рекомендуется крупнозернистые инструменты, обеспечивающие высокую производительность, но низкое качество. Отделочные работы производятся мелкозернистыми кругами.

Для соединения абразивных зерен в абразивный инстрмент служит связка. Связки подразделяют на органические и неорганически. Из неорганических связок наиболее часто применяются керамические (К) и силикатные (С).

Керамическая связка состоит из огнеупорной глины,полевого шпата, талька и жидкого стекла. Благодоря высокой прочности, водостойкости и жаропрочности она является самой распрастраненной. Недостатком керамической связки является значительная хрупкость.

Силикатная связка представляет собой жидкое стекло и имеет небольшую прочность. Круги на силикатной связке предназначены для обработки деталей в тех случаях, когда не допускается повышение температуры и нельзя применять смазочно-охлаждающие жидкости.

К органичиским связкам относятся вулканитовая (В) и бакелитовая (Б). Вулканитовая связка состоит из 70% каучука и 30% серы. Абразивные инструменты на такой связке обладают большой прочностью, но имеют малую теплостойкость. Связка применяется для узких фасонных кругов. Бакелитовая связка представляет собой синтетическую смолу. Круги, изготовленные на этой связке, прочны, эластичны, допускают большие окружные скорости, но могут применяться при температуре не выше 180С.

Алмазные круги состоят из стального, алюминиевого или пластмассового кольца (основания) и закрепленного на нем алмазного слоя толщиной 1,5-5,0 мм.

Абразивный инструмент должен обладать определенной твердостью. Под твердостью понимается способность связки удерживать абразивные зерна. В соответствии с этим разработана шкала твердости, согласно которой все аразивные делятся на 16 степеней твердости. Для каждого конкретного случая обработки необходимо подбирать инструмент определенной твердости. В круге повышенной твердости при работе продолжают удерживаться притупившиеся зерна, что приводит к повышению температуры в зоне резания и прижогу обрабатываемой поверхности. Такой круг требует частичной правки для восстановления режущей способности. Слишком мягкий круг будет сильно изнашиваться, при этом будут выкрашиваться зерна, не потерявшие еще своей остроты.

При подборе круга для данных условий обработки стремятся добиться "самозатачивания". В этом случае своевременно будут выкрашиваться затупившиеся зерна и открываться новые, острые.

В любом абразивном инструменте наряду с абразивными зернами и связкой имеются поры(пустоты), способствующие его охлаждению в процессе работы. Структура абразивного инструмента определяется количественным соотношением в нем зерен, связки и пор. Имеется 13 номеров структур. Чем больше номер структуры, тем меньше в единице объема зерен и больше пор.

Характеристики образивных кругов маркируются на нерабочей поверхности круга, где приводятся их условные обозначения: вид образивного материала, зернистость, форма, размер и допустимая максимальная скорость вращения.

В процессе работы щлифовального круга абразивные зерна изнашиваются и теряют режущую способность, а круг засаливается продуктами обработки. Для восстановления режущих свойств и геометрической формы производится переодическая правка круга. Наиболее качественная правка производиться алмазными инструментами.

Более грубая правка осуществляется шарошками, оснащенными монолитными твердосплавными дисками, металлическими дисками и звездочками из износосойких сталей или правочными кругами из карбида кремния, термокорунда т.д.

КОМПОНОВКА МЕХАНИЧЕСКИХ ЦЕХОВ

Правильное размещение оборудования является основным звеном в организации безопасной работы производственного участка и цеха. При размещении оборудования необходимо соблюдать установленные минимальные разрывы между станками, между станками и отдельными элементами здания, правильно определять ширину проходов и проездов. Невыполнение правил и норм размещения оборудования приводит к загромождению помещений и травматизму.

Расположение оборудования на площади цеха или участка определяется в основном технологическим процессом и местными условиями.

При автоматизированном производстве (комплексные автоматические заводы или цеха, автоматические линии, поточное производство) оборудование размещается по ходу технологического процесса в единую цепочку с соблюдением расстояний между оборудованием и конструктивными элементами здания. На автоматических и поточных линиях большой протяженности для перехода с одной стороны линии на другую устраивают переходные мостики.

При многостаночном обслуживании оборудование располагают с учетом максимально возможного сокращения расстояний между рабочими местами. Если по условиям технологического процесса необходимо предусмотреть стеллажи или столы для заготовок и готовых изделий, то для этого отводится дополнительная площадь в соответствии с особенностями производства.

Размещение металлорежущих станков, слесарных верстаков и другого оборудования в цехах холодной обработки принимается таким, чтобы расстояние между отдельными станками или группами станков были достаточными для свободного прохода рабочих, занятых. их обслуживанием и ремонтом. Во всех случаях размещение оборудования должно обеспечивать достаточное число проходов для людей и проездов для транспорта, обеспечивающих безопасность сообщения. Ширина проходов и проездов назначается в зависимости от расположения оборудования, характера движения, способа транспортирования и размеров деталей, но при всех условиях принимается не менее 1 м. Для перевозки грузов автомашинами устраиваются проезды шириной 3,5 м. Загромождение проходов и проездов, а также рабочих мест различными предметами не разрешается.

Проходы и проезды требуется содержать в чистоте и порядке, границы их обычно отмечаются белой краской или металлическими светлыми кнопками. Ширина рабочей зоны принимается не менее 0,8 м. Расстояние между оборудованием и элементами зданий, а также размеры проходов и проездов определяются нормами технологического проектирования механических и сборочных цехов машиностроительных заводов.

В единичном и мелкосерийном производстве часто оборудование размещается по группам станков (токарные, фрезерные, расточные, шлифовальные и т. п. станки); однако необходимо стремиться к тому, чтобы расположение оборудования исключало возможность возникновения в процессе работы встречных потоков материалов, полуфабрикатов и людей. Целесообразно устраивать в пролетах между оборудованием одностороннее движение. При транспортировании различных заготовок в проходах (особенно заготовок большой длины) нельзя допускать, чтобы транспортные средства и заготовки стесняли рабочую зону или выходили за границы проезда, прохода.

Рабочее место является первичным звеном производства, оно представляет собой определенный участок производственной площади цеха, предназначенный для выполнения одним рабочим (или бригадой) порученной работы, специально приспособленный и технически оснащенный в соответствии с характером этой работы. От того, насколько правильно и рационально будет организовано рабочее место, зависит безопасность и производительность труда. Как правило, каждое рабочее место оснащено основным и вспомогательным оборудованием и соответствующим инструментом. Отсутствие на рабочем месте удобного вспомогательного оборудования или нерациональное его расположение, захламленность создают условия для возникновения травматизма.

Рис. 1. Планировка рабочего места токаря

На рис. 1 приведена типовая организация рабочего места токаря-универсала. Рабочее место включает следующие принадлежности: тумбочку станочника для двухсменной работы 1, в каждом отделении которой хранится инструмент постоянного пользования и средства по уходу за станком; приемный стол 2 для размещения на нем тары с заготовками и обработанными деталями, нижняя полка стола используется для хранения принадлежностей к станку (патронов, люнетов и др.); деревянную решетку 3 под ноги, высота которой регулируется по росту станочника. По такой схеме целесообразно организовывать рабочие места и других станочников (фрезеровщиков, зуборезчиков, шлифовщиков и т. п.).

Рис. 2. Рабочее место сварщика для сварки малогабаритных изделий

Рабочее место сварщика, изображенное на рис. 2, предназначено для сварки малогабаритных металлоконструкций в серийном и мелкосерийном производствах. Оно укомплектовано необходимой оргоснасткой с учетом рекомендаций научной организации труда. В рабочее место входит: стол сварщика 2, стул 3, стеллажи для заготовок 1 и сварных узлов 6, два перемещающихся стола 11, подставка для подающего механизма 5, аппаратный шкаф 8, инструментальная тумбочка 9, аппарат 7 для сбора флюса, поворотный консольный кран 4 и ящик для флюса 10. Такое размещение оборудования обеспечивает удобную и устойчивую позу сварщика в процессе работы, снижает затраты времени на вспомогательные операции и физическую нагрузку, улучшает условия труда. Рабочее место снабжается приемниками вытяжной вентиляции у сварочных столов.

Рис. 3. План рабочего места контролера:

1,3 и 5 - столы контролера; 2 - тележка малая; 4 - поверочная плита; 6 и 7 - столы приборные; 8 - тумбочка инструментальная; 9 - шкаф инструментальный; 10 - стол приемный рольганговой секции; 11 - каретка-оператор

На рис. 3 приведен план рабочего места контролера, организованного с учетом требований НОТ. Контрольный пункт оборудован удобной оргоснасткой и оснащен требуемыми измерительными приборами в зависимости от обслуживаемого производства. Детали, подлежащие контролю, подаются на контрольный пункт и на любое рабочее место контролера и возвращаются после контроля на специальных транспортных средствах, что исключает ручной труд. Такая организация рабочего места повышает производительность труда и уменьшает утомляемость контролера.

Мероприятия по улучшению организации рабочих мест заключаются в рационализации трудовых движений и соответствующем оборудовании рабочего места. Технологический процесс не должен допускать непроизводительных и опасных трудовых движений и тем более опасных поз рабочего.

Пространство, в котором совершается основная часть трудовых движений, сравнительно невелико. Исследования показывают, что наиболее благоприятная зона для работ сидя определяется площадкой в 0,1 м2, когда предплечье поворачивается в локтевом суставе (руки полусогнуты). Другие зоны, например работа с помощью полностью вытянутых рук, менее благоприятны и вызывают быструю утомляемость. При работе стоя благоприятная зона также невелика. Осуществляя рационализацию трудовых движений, необходимо стремиться к обеспечению коротких и наименее утомительных движений. Следует помнить: чем больше сочленений участвуют в выполнении движения, тем оно, как правило, требует большей затраты сил. Поэтому при планировке рабочих мест и, в частности, при расстановке предметов организационно-технической оснастки необходимо предусматривать применение наиболее простых движений: движения одних пальцев, движения пальцев и запястья или движения пальцев, запястья и предплечья. Следует, по возможности, устранять такие движения, которые требуют участия не только плеча, но и всего корпуса.

При размещении на рабочем месте организационно-технической оснастки (стеллажей для заготовок и готовых деталей, инструментальной тумбочки, планшетов и пр.) или вспомогательного оборудования (поворотные краны, транспортеры и пр.) следует тщательно проверить по зонам досягаемости рук, насколько рационально установлен тот или иной предмет и какие виды движений будет при этом применять рабочий. Однако решение этой задачи не должно приводить к сближению оборудования, так как в противном случае рабочее место будет стеснено, и вероятность возникновения травматизма увеличится. На практике, используя опыт новаторов производства и соответствующие нормы при расстановке вспомогательного оборудования и оснастки, следует придерживаться такого принципа: заготовки и полуфабрикаты располагать на специальных стеллажах с левой стороны от рабочего, измерительный инструмент и тару для готовых деталей - с правой. Предметы, которыми пользуется рабочий чаще, располагают ближе к станку.

Планировка рабочего места зависит от многих условий - от типа оборудования, конфигурации и габаритов деталей, применяемой технологии, организации обслуживания, но для аналогичных работ можно установить типовые рациональные планировки рабочих мест. Следует отметить, что основное и вспомогательное оборудование не должно выходить за пределы площадки, отведенной для данного рабочего места, и устройство рабочего места должно учитывать рост и другие антропометрические данные каждого рабочего.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    Справочник технолога-машиностроителя: В 2т. /Под ред. А.Г. Косиловой, Р.К. Мещерякова. – М.: Машиностроение, 1985. – 496 с. – Т.2.

    Справочник технолога-машиностроителя. – М.: Машиностроение, 1986.

    Справочник инструментальщика / И.А. Ординарцев, Г.В. Филиппов, А.Н. Шевченко и др.; Под общ. Ред. И.А. Ординарцева. – Л.: Машиностроение. Ленингр. отд-ние, 1987.

    развито история философииКнига >> Философия

    Доход, бурно развивается автомобиле- и судостроение, станкостроение . Общество может производить все, что... страны. Вся человеческая история сводится у Ростоу к истории развития техники. Развитие передовых стран Европы и США...

Российское станкостроение прошло длительный путь своего развития, прежде чем обрело современные черты. Начало этого пути можно отнести к 1712 году, когда Андрей Нартов, русский механик, изобрел , оснащенный самоходным суппортом. Свои имена в историю российского станкостроения вписали многие другие умельцы, которые создали отрезные, опиловочные, сверлильные, некоторые другие станки – Павел Захава, Яков Батищев, Алексей Сурнин, Лев Собакин.

Отечественные мастера разрабатывали не только механические, но и оптические приборы. Их первые образцы были изготовлены в период правления Петра I в оптической мастерской, которая была организована императором. 1726 год был ознаменован открытием кафедры оптики при Академии наук, а также основанием оптической мастерской, руководство которой осуществлял М.В.Ломоносов.

Первым российским предприятием по производству станков для металлообработки стали, который был основан в Петербурге в 1790 году. В 1815 году выпуск был налажен на Тульском оружейном заводе. Отметим, что в конце XIX века многие отечественные машиностроительные предприятия начали выпуск станков наряду с другой изготавливаемой ими продукцией.

Исторические документы говорят о том, что в царской России с 1914 по 1917 год использовалось лишь 80-100 тысяч станков для обработки металла. Стремительный рост промышленного производства, который проявился и в таких отраслях, как металлообработка и машиностроение, был обусловлен индустриализацией народного хозяйства. Станкостроение в первые годы советской власти фактически создавалось заново. 29 мая 1929 года был образован «Станкотрест»: этот день стал официальной датой возникновения станкостроительной отрасли. К 1932 году токарные, шлифовальные и , некоторые другие виды оборудования выпускали восемь специализированных заводов; накануне Великой Отечественной войны в нашей стране действовал уже 41 такой завод.

Описывая этапы развития отечественного станкостроения, нельзя обойти вниманием создание в 1933 году ЭНИМС – Экспериментального научно-исследовательского института металлорежущих станков. Именно в ЭНИМС впервые в Европе были разработаны многошпиндельные агрегатные станки. Колоссальный вклад в развитие станкостроения внес ВНИИИ – Всесоюзный научно-исследовательский институт.

В послевоенные годы перед станкостроительной отраслью были поставлены две основные цели – увеличить объем выпуска продукции и улучшить ее технические характеристики. Были введены в эксплуатацию Минский, Рязанский, Коломенский, многие другие станкостроительные заводы. В 70-е годы XX века был налажен выпуск станков с ЧПУ, количество моделей которых составило около 60, при этом более 40 моделей имели возможность автоматической смены инструмента. Широкое распространение получили электрохимические и электрофизические способы обработки металла, а также размерная обработка с использованием светового луча.

Станкостроение является важнейшей отраслью машиностроения России, выпускающей разнообразные станки - металлорежущие, деревообрабатывающие, для обработки прочих материалов, а также кузнечно-прессовое оборудование, машины и аппараты для газотермического напыления и поверхностной термообработки и т.д. Кроме того, станкостроительные предприятия выпускают запасные части и принадлежности для станков, оказывают услуги по монтажу, сервисному обслуживанию и ремонту своей продукции. Станкостроительные заводы не производят конечную продукцию для общественного потребления, но выпускаемые ими станки являются основными средствами любого промышленного производства. Потребители продукции станкостроительных заводов – предприятия транспортного и сельскохозяйственного машиностроения, военно-промышленного комплекса, энергомашиностроения, металлургии, производители отдельных видов товаров массового потребления.

Продукция станкостроительных заводов имеет разнообразное назначение, виды и размеры: от сложных автоматических производственных линий в несколько сот метров длиной для крупного промышленного производства до миниатюрных токарных станков, применяемых для ремонта часовых механизмов.

Основу станочного парка машиностроительного предприятия составляют металлообрабатывающие станки, подразделяемые на:

  • фрезерные,
  • шлифовальные,
  • заточные,
  • сверлильные,
  • токарные,
  • листогибочные,
  • долбежные.

Производственный процесс станкостроительного завода делится на фазы заготовки, обработки и сборки. Для станкостроения характерен длительный производственный цикл: на изготовление одного станка уходит в среднем 5-6 месяцев. Производство представлено следующими основными цехами: литейным, механосборочным, термическим, инструментальным, ремонтно-механическим.

Современное производство нуждается в станках, отвечающих требованиям быстроты и высокой точности изготовления деталей при невысоких затратах на выполнение работы: с системами электронного управления, цифровой индикацией, возможностью включения нескольких станков в единую технологическую линию. В мировом станкостроении широко внедряются технологические инновации. Среди последних тенденций – интеграция нескольких процессов в одном станке, возможность управления станками через Интернет, модульный принцип построения реконфигурируемого оборудования, производство станков для обработки новейших материалов – комбинированных волокон керамики, труднообрабатываемых и жаростойких сплавов и др., использование нанотехнологий. Не последнее внимание уделяется дизайну и эргономике современных станков.

Ввиду того, что станкостроение является отраслью, наиболее чувствительной к экономическим спадам и подъемам, российские станкостроительные заводы пока не могут конкурировать с ведущими мировыми производителями, чему немало способствовало значительное падение производства в 90-е годы. Несмотря на то, что износ станочного парка на российских предприятиях превышает 70%, а средний возраст станков – более 15-20 лет, сохраняется крайне низкая востребованность продукции российского станкостроения на внутреннем рынке. Однако высокий потенциал, заложенный в отрасль еще в советское время, до сих пор позволяет российским станкостроительным предприятиям экспортировать до 40% своей продукции даже в страны с развитым собственным станкостроением – США, Китай, Японию, Германию. Совмещение инженерных решений высокого уровня, заложенных в российские станки, с сильной элементной базой (электроникой, электрикой, гидравликой) зарубежных производителей позволяет получить станки высокого качества. Но доля российских станков на мировом рынке еще крайне мала – всего 0,3%. В 1990 г. СССР находился на 3-м месте по производству механообрабатывающей продукции, сегодня Россия занимает лишь 22-ю строчку в рейтинге мирового станкостроения.

Начало станкостроению в России положило изобретение в 1712 г. русским механиком Андреем Нартовым токарного станка с самоходным суппортом. Развитие отрасли связано с именами русских умельцев – Якова Батищева, Павла Захавы, работавших над созданием сверлильных, опиловочных, отрезных и др. станков, применяемых в обработке ружейных стволов, Льва Собакина, Алексея Сурнина.

2024 logonames.ru. Финансовые советы - Портал полезных знаний.