Что такое фрекинг. Гидроразрыв пласта: технология проведения ГРП

Группа исследователей пришла к выводу, что фрекинг может сказываться на низком весе ребенка, рожденного в пределах трех километров от зоны его использования.

Что такое фрекинг?

Если вы в курсе самых обсуждаемых апокалиптических сценариев, которые основываются на антропогенном факторе, то наверняка знаете о возможном истощении ресурсов нашей планеты и погружении человечества в хаос анархии. Несмотря на довольно отдаленные перспективы подобного развития событий, ограниченность ресурсов, необходимых для комфортной, и нужно подчеркнуть это слово, жизни, действительно имеется. Однако, помимо десятка направлений поиска комплексного решения этой проблемы, от изобретения вечного двигателя до разработок проектов по добыче ресурсов на других планетах, существует пара упрощенных решений: найти новые источники или хорошенько потрясти старые.

Если первый вариант, в принципе, может сопровождаться строительством инфраструктуры вокруг нового объекта, содержащего полезные ископаемые, то второй действительно вызывает опасение. Один из методов, который особенно популярен сегодня в топливно-энергетической отрасли, это фрекинг .

Фрекинг, или гидравлический разрыв пласта, подразумевает, как следует из названия, жесткий, но максимально эффективный (с экономической точки зрения) способ разработки уже истощившегося месторождения. В основе технологий фрекинга лежит использование целого спектра химических реагентов, которые при взаимодействии вызывают образование высокопроводимых трещин для выкачивания последних остатков нефти и газа, находящихся в труднодоступных пластах земли.

Сбор данных

Эта варварская методика уже снискала дурную славу, но законы определенных стран, включая США, разрешают её использование. Хотя отдельные штаты и стараются запретить применение фрекинга на своей территории, чтобы остановить жадных до денег компании, требуется собрать неоспоримый набор доказательств его негативного влияния на окружающую среду и здоровье населения.

В частности, опубликованное в Science Advance исследование вносит свой вклад в эту борьбу. Коллектив исследователей из Принстона, Кембриджа и других университетов США установил, что фрекинг имеет прямое воздействие на здоровье беременных женщин. Их работа показала, что дети, рожденные в пределах трех километров от зоны добычи ресурсов методом разрыва пласта, на 25% больше подвержены риску родиться с низким весом.

В ходе исследования были изучены записи рождения более чем 1 млн детей с 2004 по 2013 гг. Более того, для чистоты исследования было дополнительно изучено семейное положение каждой матери, её место проживания, раса и образование.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Эта технология, применяемая для интенсификации работы и повышения отдачи нефтедобывающих скважин уже более полувека, вызывает, пожалуй, наиболее жаркие споры среди экологов, ученых, простых граждан, а нередко даже и самих работников добывающей отрасли. Между тем смесь, которая закачивается в скважину во время гидроразрыва, на 99% состоит из воды и песка, и лишь на 1% – из химических реагентов.

Что мешает нефтеотдаче

Основная причина низкой продуктивности скважин наряду с плохой естественной проницаемостью пласта и некачественной перфорацией - снижение проницаемости призабойной зоны пласта. Так называется область пласта вокруг ствола скважины, подверженная наиболее интенсивному воздействию различных процессов, сопровождающих строительство скважины и ее последующую эксплуатацию и нарушающих первоначальное равновесное механическое и физико-химическое состояние пласта. Само бурение вносит изменения в распределение внутренних напряжений в окружающей забой породе. Снижение продуктивности скважин при бурении происходит также в результате проникновения бурового раствора или его фильтрата в призабойную зону пласта

Причиной низкой продуктивности скважин может быть и некачественная перфорация вследствие применения маломощных перфораторов, особенно в глубоких скважинах, где энергия взрыва зарядов поглощается энергией больших гидростатических давлений.

Снижение проницаемости призабойной зоны пласта происходит и при эксплуатации скважин, сопровождающейся нарушением термобарического равновесия в пластовой системе и выделением из нефти свободного газа, парафина и асфальтосмолистых веществ, закупоривающих поровое пространство коллектора. Интенсивное загрязнение призабойной зоны пласта отмечается и в результате проникновения в нее рабочих жидкостей при проведении в скважинах различных ремонтных работ. Приемистость нагнетательных скважин ухудшается вследствие закупорки порового пространства пласта продуктами коррозии, илом, нефтепродуктами, содержащимися в закачиваемой воде. В результате протекания подобных процессов возрастают сопротивления фильтрации жидкости и газа, снижаются дебиты скважин и возникает необходимость в искусственном воздействии на призабойную зону пласта с целью повышения продуктивности скважин и улучшения их гидродинамической связи с пластом.

Технология фрекинга

Для повышения нефтеотдачи пласта, интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин используется метод гидровлического разрыва пласта или фрекинга. Технология заключается в создании высокопроводимой трещины в целевом пласте под действием подаваемой в него под давлением жидкости для обеспечения притока добываемого флюида к забою скважины. После проведения ГРП дебит скважины, как правило, резко возрастает – либо же существенно снижается депрессия. Технология ГРП позволяет «оживить» простаивающие скважины, на которых добыча нефти или газа традиционными способами уже невозможна или малорентабельна.

Гидравлический разрыв пласта (ГРП) является одним из наиболее эффективных средств повышения производительности скважин, поскольку приводит не только к интенсификации выработки запасов, находящихся в зоне дренирования скважины, но и, при определенных условиях, позволяет существенно расширить эту зону, приобщив к выработке слабо дренируемые зоны и пропластки – и, следовательно, достичь более высокой конечной нефтеотдачи.

История метода ГРП

Первые попытки интенсификации добычи нефти из нефтяных скважин были предприняты еще в 1890-х годах. В США, где добыча нефти в это время развивалась стремительными темпами, был успешно испытан метод стимулирования добычи из плотных пород с помощью нитроглицерина. Идея заключалась в том, чтобы взрывом нитроглицерина раздробить плотные породы в призабойной зоне скважины и обеспечить увеличение притока нефти к забою. Метод успешно применялся некоторое время, несмотря на свою очевидную опасность.

Первый коммерчески успешный гидроразрыв пласта был осуществлен в 1949 году в США, после чего их количество стало резко возрастать. К середине 50-х годов количество проводимых ГРП достигло 3000 в год. В 1988 году общее количество проведенных ГРП перевалило за 1 миллион операций, и это только в США.

В отечественной практике метод ГРП начали применять с 1952 года. Пик применения метода был достигнут в 1959 году, после чего количество операций снизилось, а затем эта практика и вовсе прекратилась. С начала 1970-х и до конца 1980-х ГРП в отечественной нефтедобыче в промышленных масштабах не проводились. В связи с вводом в разработку крупных нефтяных месторождений Западной Сибири потребность в интенсификации добычи попросту отпала.

И день сегодняшний

Возрождение практики применения ГРП в России началось только в конце 1980-х. В настоящее время лидирующие позиции по количеству проводимых ГРП занимают США и Канада. За ними следует Россия, в которой применение технологии ГРП производят в основном на нефтяных месторождениях Западной Сибири. Россия – практически единственная страна (не считая Аргентины) за пределами США и Канады, где ГРП является привычной практикой и воспринимается вполне адекватно. В других странах применение технологии гидроразрыва затруднено из-за местных предубеждений и недопонимания технологии. В некоторых из них действуют существенные ограничения по использованию технологии ГРП вплоть до прямого запрета на ее применение.

Ряд экспертов утверждают, что использование технологии гидроразрыва при добыче нефти – это нерациональный, варварский подход к экосистеме. В то же время, метод широко применяется практически всеми крупными нефтяными компаниями.

Применение технологии ГРП достаточно обширно – от низко- до высоко проницаемых коллекторов в газовых, газоконденсатных и нефтяных скважинах. Кроме того, с использованием ГРП можно решать специфические задачи, например, ликвидировать пескопроявления в скважинах, получать информацию о ФЕС объектов испытания в поисково-разведочных скважинах и т.д..

В последние годы развитие технологий ГРП в России направлено на увеличение объемов закачки проппанта, производство азотных ГРП, а также многостадийных ГРП в пласте.

Оборудование для гидроразрыва пласта

Оборудование, необходимое для гидроразрыва пласта, производит целый ряд предприятий, как зарубежных, так и отечественных. Одно из них - компания «ТРАСТ-ИНЖИНИРИНГ» , которая представляет широкий выбор оборудования для ГРП в стандартном исполнении, так и в виде модификации, выполняемой по желанию заказчика.

В качестве конкурентных преимуществ продукции ООО «ТРАСТ-ИНЖИНИРИНГ» необходимо отметить высокую долю локализации производства; применение самых современных технологий проектирования и производства; использование узлов и комплектующих от мировых лидеров отрасли. Важно отметить и присущую специалистам компании высокую культуру проектирования, производства, гарантийного, постгарантийного и сервисного обслуживания. Оборудование для ГРП производства ООО «ТРАСТ-ИНЖИНИРИНГ» легче приобрести благодаря наличию представительств в Москве (Российская Федерация), Ташкенте (Республика Узбекистан), Атырау (Республика Казахстан), а также в Панчево (Сербия).

Разумеется, метод ГРП, как и любая другая технология, применяемая в добывающей отрасли, не лишен определенных недостатков. Один из минусов фрекинга – в том, что положительный эффект операции может быть сведён на нет непредвиденными ситуациями, риск возникновения которых при столь обширном вмешательстве довольно велик (например, возможно непредвиденное нарушение герметичности близлежащего водного резервуара). Вместе с тем. гидравлический разрыв пласта является сегодня одним из наиболее эффективных методов интенсификации скважин, вскрывающих не только низкопроницаемые пласты, но и коллекторы средней и высокой проницаемости. Наибольший эффект от проведения ГРП может быть достигнут при внедрении комплексного подхода к проектированию гидроразрыва как элемента системы разработки с учетом разнообразных факторов, таких как проводимость пласта, система расстановки скважин, энергетический потенциал пласта, механика трещины, характеристики жидкости разрыва и проппанта, технологические и экономические ограничения.

Какой благовоспитанный и солидный человек, с такой милой, постоянной, доброй улыбкой на лице. Знаете кто это?
Это ни кто иной как Джорж Митчел, руководитель собственной компании Mitchell Energy & Development Corp, ради обогащения, ради той самой прибыли, он сделал все возможное и невозможное, но добился, чтобы добычу сланцевой нефти сочли рентабельной и сильные мира сего вложили свои миллиарды в разработку.
Перед вами убийца всего живого на миллионах акров земли, во множестве стран мира. Это после его успеха, из водопроводных труб незадачливых лузеров не вписавшихся в рынок, то есть местных жителей, которым не повезло жить в окрестностях тех мест, где он и его последователи начали добычу сланцевой нефти, потекла вода вспыхивающая от поднесенной спички. Это после того, как он ударил по рукам со своими спонсорами, миллионы тонн химикатов по всему миру загрязнили подземные воды, землю, убили все живое вокруг, привели к рождению калек, болезням и смертям людей. Хотя если быть точным, то он лишь один из многих... Разве есть преступление на которое не пойдет капитал при достаточном проценте прибыли?

«Обеспечьте капиталу 10% прибыли, и капитал согласен на всякое применение, при 20% он становится оживленным, при 50% положительно готов сломать себе голову, при 100% он попирает все человеческие законы, при 300% нет такого преступления, на которое он не рискнул бы пойти, хотя бы под страхом виселицы».

Так о чем же идет речь?

Сланцевая нефть - полезное ископаемое из группы твёрдых каустобиолитов, дающее при сухой перегонке значительное количество смолы близкой по составу к нефти. (Каустобиолиты - горючие полезные ископаемые органического происхождения, представляющие собой продукты преобразования остатков растительных, реже животных, организмов под воздействием геологических факторов. По крайней мере так считается общепризнанным.
Есть альтернативная минеральная теория, о которой мы почти не слышим. Ее основателем считают Менделеева. Сторонники этой теории считают нефть продуктом химических реакций, происходящих на большой глубине и не связанных с органическими останками. И скорость этих процессов сотни, а то и десятки лет. То есть нефть способна восстанавливаться в прежнем и больших объемах спустя определенный промежуток времени внутри опустевшего месторождения!)

Сжигать нефть?! Точно также можно ведь топить (печь) ассигнациями .
Д. Менделеев.
(Ассигнация - это историческое название бумажных денег, выпускавшихся в Российской Федерации в период с 1769 до 1849.)

Из одной тонны обогащенного черным золотом сланца при помощи новейших технологий можно добыть только 0,5 - 1,25 барреля. (1 Нефтяной баррель = 158,987 литра.)

Опять же все привыкли говорить о сланцевой нефти, но почему то забывают о сланцевом газе, а там подобные же схемы добычи...

(Сланцевый газ ставший рентабельным в 2000-е годы привел к переделу мировой газовый рынок. Благодаря широкому внедрению технологии фрекинга- гидроразрыва пластов, американцы научились добывать газ из сланцевых пород, существенно снизив издержки. Дешевый газ хлынул на рынок США и завоевал его в течение какой-то пары лет. Америка стала добывать больше, а импортировать, соответственно, меньше, что оказало сильнейшее давление на цены по всему миру.)

Какая разница в добыче обычной нефти и сланцевой? Ведь обычная добыча тоже загрязняет природу и разрушает экологию планеты.

При классическом способе добычи нефти используется поэтапный метод: Первичный. Жидкость поступает под воздействием высокого давления в пласте, которое образуется от подземных вод, расширения газов и прочее. При таком способе коэффициент извлечения нефти составляет примерно 5-15%.

Вторичный. Такой метод используется тогда, когда естественного давления уже недостаточно, чтобы поднимать нефть по скважине и он заключается в использовании закачиваемой воды, попутного или натурального газа. В зависимости от пород резервуара и характеристик нефти, коэффициент извлечения нефти при вторичном методе достигает 30%, а суммарное значение - 35-45%.

Третичный. Такой метод заключается в увеличении подвижности нефти для повышения ее отдачи. Один из способов - это TEOR, при помощи которого за счет нагрева жидкости в пласте уменьшается вязкость. Для этого наиболее часто применяется водяной пар. Реже используется частичное сжигание нефти на месте, непосредственно в самом пласте. Однако такой способ не очень эффективен. Для изменения поверхностного натяжения между нефтью и водой можно ввести специальные поверхностно активные вещества или детергенты. Третичный метод позволяет повысить коэффициент извлечения нефти еще примерно на 5-15%. Данный способ используется лишь в том случае, если добыча нефти продолжает оставаться рентабельной. Поэтому применение третичного метода зависит от цен на нефть и стоимости ее извлечения.

Но человек на фото добился, так называемой, революционной добычи нефти из сланцев.

Существует два основных способа получения необходимого сырья из горючих сланцев. Первый - это добыча сланцевой породы открытым или шахтным способом с ее последующей переработкой на специальных установках-реакторах, где сланцы подвергают пиролизу без доступа воздуха, в результате чего из породы выделяется сланцевая смола. Этот метод активно развивался в СССР. Хорошо известны также проекты по добыче сланцев в провинции Фушунь (Китай), на месторождении Ирати (Бразилия).

А второй это гидравлический разрыв пласта —процесс, который предполагает введение смеси воды, песка и химических веществ в газоносные породы под чрезвычайно высоким давлением (500-1500 атм). Давление приводит к образованию крошечных трещин, которые позволяют газу вырваться. Вся эта система трещин связывает скважину с удаленными от забоя продуктивными частями пласта. Для предотвращения смыкания трещин после снижения давления в них вводят крупнозернистый песок, добавляемый в жидкость, нагнетаемую в скважину. Радиус трещин может достигать нескольких десятков и даже сотен метров. Процесс разрыва в большой степени зависит от физических свойств жидкости и, в частности от ее вязкости. Чтобы давление разрыва было наименьшим, нужно, чтобы она была фильтрующейся.
Повышение вязкости так же, как и уменьшение фильтруемости жидкостей, применяемых при разрыве пластов, осуществляется введением в них соответствующих добавок. Такими загустителями для углеводородных жидкостей, применяемых при разрыве пластов, являются соли органических кислот, восокомолекулярные и коллоидные соединения нефти (например, нефтяной гудрон и другие отходы нефтепереработки). Значительной вязкостью и высокой песконесущей способностью обладают некоторые нефти, керосино-кислотные и нефте-кислотные эмульсии, применяемые при разрыве карбонатных коллекторов, и водо-нефтянные эмульсии.
Эти жидкости и используются в качестве жидкостей разрыва и жидкостей-песконосителей при разрыве пластов в нефтяных скважинах. Применение жидкостей разрыва и жидкостей-песконосителей на углеводородной основе для разрыва пластов в водонагнетательных скважинах может привести к ухудшению проницаемости пород для воды вследствие образования смесей воды с углеводородами. Во избежание этого явления пласты в водонагнетательных скважинах разрывают загущенной водой. Для загущения применяют сульфид-спиртовую борду и другие производные целлюлозы, хорошо растворимые в воде.
Как правило жидкости используемые в этом методе канцерогенные... Особо опасно попадание в грунтовые воды всех этих химических реагентов, используемых при гидравлическом разрыве в частности в пласты содержащие артезианскую воду, используемую для питья. Операцию гидроразрыва пластов на одной территории приходится повторять до 10 раз в год. При гидроразрыве химическая смесь пропитывает породу, что ведёт к загрязнению значительной территории...

В англоязычных СМИ репортеры наперебой обсуждают химический состав раствора для проведения гидроразрывов, используемый компаниями, добывающими сланцевый газ. В целом, объем воды, необходимой для проведения гидроразрыва - например, в формации Марселлус, составляет порядка 16 тыс. тонн. При этом сами компании всегда сообщали, что от 98 до 99% раствора - это просто вода и песок. Вопросы вызывали оставшиеся 1-2%. Эти оставшиеся проценты, которые вполне могут попасть в питьевую воду по трещинам, образовавшимся в породе после гидроразрыва, весьма волнуют американскую общественность. В абсолютном исчислении количество химикатов весьма велико: если общая масса воды и песка - около 16 тыс. тонн, которые доставляют несколько сотен автоцистерн, то доля химических добавок может составлять до 320 тонн.

По информации, предоставленной компанией Halliburton, которая впервые провела гидроразрыв в 1947 г, выступив пионером в этой области, 98,47% объема жидкости, которая используется для гидроразрыва - это смесь воды и песка, а 1,53% - химические добавки - формальдегид, хлорид аммония, уксусный ангидрид, метиловый и пропиловый спирты, а также соляная кислота.

После того, как смесь для гидроразрыва готова, ее закачивают под землю с усилием до 70 МПа. Давление воды вызывает появление трещин, а песчинки, которые загоняет в эти трещины поток жидкости, мешает их последующему схлопыванию. К слову, под словом "песчинки" подразумевается не только обычный песок, но и песок с полимерным покрытием (resin-coated sand) и частицы спеченного боксита.

Проведение одного гидроразрыва занимает от 3 до 10 дней. При этом компания Chesapeake Energy использует совершенно иные химикаты, чем Halliburton, и доля их в готовом растворе намного ниже, порядка 0,5% добавок. О чем они с гордостью заявляют...

К слову, задачу специалистов, работающих в американских департаментах защиты окружающей среды, действующих в каждом штате, осложняет то, что разные компании используют различные наборы химикатов, их свыше 85...

Необходимо сказать несколько слов о понятии сланцевая нефть . В Америке, где сланцевая нефть стала играть существенную роль в повышении нефтедобычи, под этим термином часто понимают нефть двух видов. Сланцевой называют нефть, получаемую из горючих сланцев, которая по своим свойствам (плотности, вязкости) значительно отличается от традиционной легкой нефти. Одновременно с этим часто тем же самым термином обозначают нефть по свойствам аналогичную обычной легкой нефти, но содержащуюся в плотных низкопористых низкопроницаемых коллекторах (сланцах). Чтобы разделить эти два вида нефти (оба из которых добываются из сланцев) специалисты пользуются двумя терминами: shale oil - для высоковязкой сланцевой смолы из горючих сланцев, требующей дополнительной обработки для превращения ее в нефть и tight oil - для легкой нефти, содержащейся в коллекторах с низкими фильтрационно-емкостными свойствами.

В России:

Россия пустила на свои месторождения американцев, которые добывают сланцевую нефть на сибирских месторождениях. Наиболее активно экологически опасные методы гидроразрыва пласта используют на Баженовском месторождении, где давно работают западные нефтесервисные компании. Щадящая советская технология термонагрева сланцев пока не доработана и может оказаться вообще невостребованной. "Роснефть", "Лукойл" и "Газпром нефть" имеют свои участки на Баженовском месторождении, трудноизвлекаемую нефть они добывают с помощью бурения горизонтальных скважин и гидроразрыва пласта. Неслучайно в 2012 году российские нефтяные боссы посетили конференцию по добыче сланцевых углеводородов в США, где рассказали о своем опыте работы в этом направлении. Роснефть опробовала горизонтальное бурение с гидроразрывом пластов в 2011 году на Приобском месторождении. Позже этот метод использовался на 50 скважинах, в то время как в 2012 году их было три. Самым активным пользователем технологии на сегодняшний день является "Лукойл", компания к началу 2013 года пробурила 215 горизонтальных скважин и добыла таким образом 19 миллионов баррелей нефти. В планах у компании было довести количество таких скважин до 450 скважин. Есть опыт такого бурения и у купленной "Роснефтью" ТНК-ВР, число скважин которой превысило сотню. Добывать нефть из сложного месторождения российские компании решили в тесном сотрудничестве с западными нефтедобывающими корпорациями и нефтесервисными компаниями. Так "Газпром нефть" обещал в 2012 что приступит к освоению Баженовской свиты совместно с Royal Dutch Shell Plc в течение трех лет. Роснефть на свои участки запустит Exxon Mobil Corp. В стране уже активно работают три крупнейшие нефтесервисные компании мира:
- Schlumberger Ltd. (SL
- Weatherford International Ltd. (WFT);
- C. A.T. Oil AG, которые по всей вероятности и будут выступать подрядчиками.
Чтобы сохранить собственную маржу и дать заработать американцам, нефтяники пролоббировали пониженный налог на сланцевую нефть. Значит, в бюджет от этой нефти будет поступать намного меньше денег. Кроме того, они получили обещание снизить экспортные пошлины в случае заметного падения цен на нефть, которого, к слову, эксперты не ожидали в то время... Административный компонент черного золота будет регулироваться с учетом более высокой себестоимости сланцевой добычи.
В настоящее время известно более 70 месторождений с открытыми запасами нефти в пластах сланцев в северной части России. Баженовская свита распространена в Западно-Сибирской НГП на территории более 1 млн км3. Отложения бажена выделены в пределах ХМАО-Югра, Тазовского п-ова, п-ова Гыдан, восточной и центральной части п-ова Ямал. Отложения баженовской свиты залегают на глубине от 600 м у границ распространения до максимальных глубин 3500-3800 м.

В США:

В США основные запасы сланцевой нефти располагаются на юге Техаса (Игл Форд),

в районе Скалистых гор (Найобрара формейшн, Баккен Шейл), на западном побережье (Монтерей формейшн) , а так же на северо-востоке США (Ютика Шейл) и в восточной части Канады (Кардиум формейшн)
В результате сланцевой революции в США количество добывающих скважин с двух сотен в 2000-2005 годах быстро выросло почти до 5000 скважин к концу 2012 года. И если в 2008 году добыча сланцевой нефти на месторождении Bakken составляла лишь около 1% от общего объема добычи в США, то к концу 2012 года на месторождении добывается без малого 700 тыс. барр/день, что составляет около 10% всей нефтедобычи в США. А всего в стране добывается уже более полутора миллионов барр/день сланцевой нефти и ею обеспечена значительная часть общего роста добычи нефти в США.

В Иордании:

Страна в недостаточной мере обеспечена пресной водой, которая при нынешних технологиях добычи нефти из сланца расходуется в значительных объемах. Учитывая тот факт, что страна снабжается пресной водой из двух рек - Ярмука и Иордана, которые приносят в год до 850 млрд. куб. м пресной воды (из которых более 28 млрд. куб. м уйдут на обеспечение добычи сланцевой нефти), уже в 2015 году при выполнении заявленных планов по разработке нефтяных сланцев в Иордании может образоваться 5% дефицит пресной воды, не учитывая рост населения и увеличения потребления воды в других секторах экономики. Тем не менее, потенциальная опасность не останавливает иорданское правительство, ожидаемые доходы от экспорта нефти видятся для страны привлекательнее возможного дефицита важнейшего ресурса.

В Израиле:

По оценкам Israel Energy Initiatives (IEI) ресурсы нефтяного сланца в долине составляют около 34 млрд. т, что соразмерно запасам нефти в Саудовской Аравии. Israel Energy Initiatives (IEI) - израильская компания, базирующаяся в Иерусалиме.
В Израиле планируют применить принципиально новые методы извлечения нефти из керогена, не похожие на используемые методы в других странах. На начальных этапах добыча будет вестись методами внутрипластовой добычи с использованием электрических и газовых нагревателей, а позже, согласно сообщениям IEI, будет разработана технология, направленная на радикальное снижение объемов воды, требуемых для добычи. Одной из основных целей проекта является именно разработка и апробация этой технологии уже к 2019-2020 гг. Такая технология позволит не только не тратить на добычу сланцев значительные объемы воды, как это происходит сейчас, но и каким-то образом получать воду вместе с нефтью на подобных месторождениях.

Стоит отметить, что этот проект во многом является проектом геополитической спекуляции. Руководители компании-оператора и ведущие инвесторы проекта - британец Якоб Ротшильд и американцы Руперт Мердок и Дик Чейни, открыто выражают свое мнение по поводу геополитической направленности проекта, позиционируя его во многом как проект, нацеленный против ресурсного национализма арабских нефтедобывающих стран. Джонас, ярый сионист, полагает, что запасы Шфела это только начало: "Мы считаем, что в Израиле больше нефти, чем в Саудовской Аравии. Там может быть до полутриллиона баррелей". Поскольку транснациональные нефтяные компании опасаются развивать месторождение Шфела, за развитие этого крупнейшего в мире месторождения взялась компания, которая ранее не занималась этим бизнесом, компания IDT

В Марокко:

К принципиальным изменениям на собственном рынке нефти готовится и еще одна страна-импортер. В Марокко еще во второй половине 2000-х гг. совместно с правительством США был запущен пилотный проект по добыче нефтяного сланца Тарфайа (Tarfaya Oil Shale Pilot Plant project) под управлением компании «Сан Леон Энерджи».
Ресурсы страны оцениваются в 7,3 млрд. т нефти, ресурсы Тарфайи - в 3,11 млрд. т.В 2010 году проект перешел в стадию обустройства месторождения и инфраструктуры. По оценкам компании-оператора, уже к 2013 году на месторождении будет производиться 3 млн. т нефти в год

Второй проект - Тимагди - оценивается в 2,05 млрд. т.н.э. Проект должен был стартовать еще в 2011 году, но по непонятным причинам был отложен до начала 2012 года. По оценкам компании уже в 2012 году на месторождении будет добыто 2,5 млн. т нефти.
Потребление Марокко на 2011 год составило 11,4 млн. т нефти, а производство, - всего лишь 9 тыс. т в год. За счет добычи нефти на этих проектах страна уже в ближайшие годы сможет сократить разрыв между производством и потреблением, даже несмотря на рост спроса в стране (по оценкам ИНЭИ РАН, к 2015 году спрос на нефть достигнет 11,8 млн. т). Стоит также отметить, что в Марокко имеется НПЗ, рассчитанный на переработку 10 млн.т нефти, в данный момент загруженный только наполовину импортным сырьем. Добыча 5 млн. т собственной нефти позволит африканской стране отказаться от импорта нефтепродуктов и высвободить для своих североафриканских соседей, в частности для Ливии, возможность дополнительно экспортировать 5 млн. т нефти в Европу.

В Китае:

Ресурсы нефтяного сланца Китая оцениваются более чем в 46 млрд. т н.э., в то время как технически извлекаемые из нефтяного сланца запасы сланцевой нефти (shale oil) составляют 550 млн. т. На конец 2011 года, по данным ВР statistical review of World Energy, доказанные запасы традиционной нефти в Китае составляли 2 млрд. т. Несмотря на значительные ресурсы, страна не спешит начать активную добычу нефти из сланцевых плеев. На данном этапе добыча из этих источников составляет 350 тыс. т в год, что соразмерно 0,2% от общего объема добычи в стране. На данный момент китайские компании активно инвестируют в разработку месторождений нефти низкопроницаемых пород в Северной Америке, обучаясь технологиям мультистадийного гидроразрыва пласта в совокупности с наклоннонаправленным бурением. На данном этапе сложно сказать, когда Китай начнет (и начнет ли вообще) применять эту технологию на собственных формациях.

Китай принимает участие в добыче нефти в США...
По некоторым прогнозам значительного роста добычи и нетрадиционной, и традиционной нефти в Китае не ожидается. К 2030 году общая добыча страны по прогнозам CERA составит 175-185 млн. т, а добыча сланцевой нефти - 3 млн. т, в то время как спрос к этому же моменту может возрасти до 665 млн. т. К 2030 году суммарная добыча нефти прогнозируется на уровне 176-190 млн. т, добыча нефти сланцевых плеев на уровне 4-15 млн. т. н.э., при спросе в 665,6 млн. т.

Согласно сообщению China"s National Energy Administration добыча нефти из нефтяного сланца в Китае может составить около 10 млн. т в год.
Почему же один из ведущих нефтеимпортеров мира не развивает собственную добычу нефти за счет запасов в нетрадиционных источниках?

Да потому, что там понимают далеко идущие последствия, нефть пить не будешь... В экологическом плане в Китае итак далеко не райская жизнь.

К тому же:
- китайские компании проводят политику активной инвестиционной экспансии на Ближнем Востоке, в Канаде, Африке и в Латинской Америке, обеспечивая собственную страну сырьем, добываемым за рубежом, а разработку собственной нефти откладывают «до лучших времен». Аналогичную политику в свое время проводили США, законсервировав значительное число собственных месторождений и осуществляя экспансию на зарубежные рынки силами компаний-мейджоров;
- отсутствие у Китая технологий, позволяющих добывать сланцевую нефть без серьезного ущерба для экологии и водоснабжения населения. Как уже было отмечено выше, современные технологии добычи сланцевой нефти предполагают значительные водозатраты, в то время как в Китае 65% пресной воды уходит на мелиорацию, а 60% значительно загрязнены и непригодны для питья. Во многих районах воды для использования в добыче просто нет. Добыча сланцевой нефти в больших объемах может привести Китай на грань настоящей экологической катастрофы . Однако, если вспомнить про разрабатываемую в Израиле «экологичную» технологию добычи сланцев с попутной добычей пресной воды, после масштабного внедрения этой технологии в мире ситуация для азиатского рынка может резко измениться; Основные запасы нефтяных сланцев сконцентрированы в провинциях Северо-Восточного Китая и в крупном промышленном центре Фушунь (восточная часть страны, менее 200 км до границы с Северной Кореей).

Национальные корпорации ведут добычу на нескольких пилотных месторождениях этих провинций, используя в основном внутрипластовые методы добычи с последующей переработкой углеводородной смеси в синтетическую нефть на заводах - апгрейдерах. По сообщению компании McKinsey & Company запасы нефти низкопроницаемых пород в Китае могут оказаться в 1,5 раза больше, чем в Северной Америке, что в перспективе может привести к значительному росту добычи этого вида нефти (точные цифры в сообщении не приводятся).

В Японии:

3 октября 2012 года в Японии добыли первую нефть. Компания распространила сообщение, что эксперимент будет осуществлен в районе города Ога в префектуре Акита. Ее запасы в самой Японии невелики. Но Japex рассчитывает таким путем освоить самые современные технологии добычи сланцевой нефти, чтобы затем применить их в других странах. Эта компания, 34% акций которой принадлежит государству, обладает правами на разработку месторождений в Индонезии, Ираке и Канаде.
3 октября 2012 года в Японии добыли первую нефть. Разработка первого в Японии месторождения горючего сланца велась Japex долгое время. Объем запасов месторождения в Аките равен примерно 5 млн баррелей, что, в принципе, немного. Однако для Японии это составляет около 10 % годовой потребности.
Тестовое бурение проводилось на месторождении «Аюкава», в городе Юрихонджо в префектуре Акита, в северо-западной части острова Хонсю. Залежи сланцевой нефти были обнаружены на глубине 1,8 тысячи метров. Чтобы добраться до нефтеносного слоя компания вливала в горную породу кислоты, размягчающие камень. Это было необходимо для последующего бурения...

В Австралии:

По данным МЭА, технически извлекаемые запасы нефти из сланцев (shale oil) в Австралии составляют 1,64 млрд. т нефти. На данный момент в стране действуют три проекта по добыче нефти из сланцевых плеев. Проект расположен на месторождении Стюарт, неподалеку от города Гледстоун. Стоит отметить, что это месторождение действует с 1970-х годов. Актив неоднократно перепродавался различным инвесторам и закрывался по требованию Greenpeace в связи с неблагоприятной экологической обстановкой.

«Вторую жизнь» проект получил в 2008 году, после того как у канадских компаний была закуплена и внедрена технология добычи сланцевой нефти, однако в том же году он попал под действие двадцатилетнего экологического моратория, запрещавшего добывать нефть из сланцевых плеев штата Queensland. С 2008 по 2011 год проект бездействовал, добыча не велась. Только после вмешательства Федерального Правительства Австралии местные власти разрешили продолжить проект и в начале 2011 года отменили мораторий на разработку сланцевых месторождений.

Правительство кладет деньги себе в карман и заявляет, что сможет сделать Австралию полностью энергетически независимой.

Вообщем сланцевой нефти в мире очень много. Огромные запасы, кроме выше перечисленных разведаны в Тасмании, ЮАР, Аргентине, Украине, Эстонии, Бразилии и других странах.

Основные проблемы для экологии и жителей:

Добыча нефти сланцевых плеев при современном уровне технологий связана с огромным уровнем расхода воды, так для добычи 1 барреля нефти требуется от 2 до 7 бар воды (от 317,8 до 1112,3 л).

Загрязнение воды происходит несколько раз, во первых используется чистая вода из окрестных водоемов или привозная, которую смешивают с химикатами, во вторых из скважины нефть поступает вместе с водой которой там до 70% . Эта вода также загрязняется не только нефтью, но и водой смешанной с химикатами, что привезли, ну и на закуску наша адская смесь по трещинам поступает в артезианскую воду или даже выше, в грунтовые воды, убивая либо отравляя все живое...

Важным аспектом экологического влияния нефти сланцевых плеев является высокая энергоемкость процесса их извлечения. По оценкам компании RAND Corporation от 2005 года, добыча 100 тыс. барр./сут требует строительства электростанции мощностью в 1200 МВт, которой было бы достаточно, что бы снабдить энергией свыше 300 тыс. домохозяйств в США.

Немаловажным фактором являются и значительные выбросы парниковых газов при разработке сланцевых месторождений. Энергетический институт Колорадо в тесном сотрудничестве с правительством США представил результаты расчетов, согласно которым инфраструктура добычных проектов, рассчитанных на добычу 90 млн т в год, будет производить одновременно более 350 млн т углекислого газа в год. Это составляет около 5 % от текущих годовых выбросов парниковых газов США (7,26 Гт CO2).

После гидроудара метан и химические реактивы попадают в водяные пласты, а затем в водопровод. В процессе добычи используется большое количество воды, которая потом не очищается. Выбросы метана в атмосферу влияют на усиление «парникового» эффекта.

Ну и главное: запасы чистой пресной воды снижаются во всем мире стремительными темпами. Чистая пресная вода - вот главный ресурс, и без нее человечеству будет крайне тяжело выжить.

В Великобритании добыча сланца привела к серии землетрясений в районе одного из курортных городков. По экологическим соображениям приостановлена добыча в трех американских штатах и двух канадских провинций.

Но дальше всех пошла Франция. В июле 2011 французское правительство приняло решение о запрете на разработки сланцевых месторождений газа и нефти методом ГРП и аннулировало все ранее выданные лицензии. Прогнозируется разработка аналогичной директивы уже на уровне ЕС.

Сегодня добыча сланцевого газа методом гидроразрыва пласта или коротко фрекинг оказалась в списке технологий, которые популярно нелюбимы. Фрекинг представляет собой метод закачивания воды под высоким давлением для извлечения природного газа из взломанного пласта. Гидроразрыв пласта критикуют в мире довольно широко как опасный метод, который даже запрещен в ряде стран. Гидроразрыв пласта обвиняют в использовании токсичных компонентов, которые загрязняют окружающую среду, и провоцировании землетрясений. Противники метода утверждают, что результатом гидроразрыва пласта окажется загрязнение питьевой воды метаном до взрывоопасного состояния. А загрязнение токсинами вызовет неведомые заболевания. Звучит устрашающе? Ещё бы!

Гидроразрыв пласта отличная цель, на которую следует направить скептический взгляд.

В 2010 фильм Gasland бросил на рассмотрение публике обвиняющие заявления в отношении не только фрекинга. Фильм нарисовал жутковатую картину скрытности, жажды наживы любой ценой и бездумное загрязнение всего живого вокруг добывающими подземные ресурсы компаниями. Добывающие компании ответили веб страничкой «Развенчание Gasland» (Debunking Gasland) и другими публикациями, которые не только опровергали заявления, но и обрушились на продюсера фильма как активиста движения. Как было сказано в ответ на фильм, заявления брошены без геологической экспертизы и опыта в бурении скважин. Кому из противоборствующих сторон должен верить обычный человек с улицы? К сожалению, слушать приходится или противников гидроразрыва, или сторонников. Реже или никогда человек с улицы беспристрастно анализировал все за и против фрекинга на основании научно обоснованных фактов.

Природный газ находится в пластах сланцев или угля и покидает эти природные емкости через естественные разломы. Близкие к поверхности месторождения сравнительно легко извлечь бурением без фрекинга. Но более глубокие и более богатые месторождения находятся на глубинах 1,5-6 километров, где под более высоким давлением пласты имеют значительно меньшее количество разломов и проницаемость породы недостаточна, чтобы извлечь большое количество сланцевого газа. В этих глубоко залегающих плотных породах имеет смысл применить способ добычи сланцевого газа методом гидроразрыва пласта. Пласт сланца обычно не толще ста метров, поэтому скважины бурят горизонтально до глубины примерно один километр и устанавливают трубу, получая возможность создать гидравлический рычаг. Закачивая воду в небольшое отверстие трубы, можно создавать давление до 700 атмосфер и воздействовать на обширную площадь. Давление разрывает пласт на множество трещин около 1 мм, позволяя сланцевому газу покинуть насиженное место. Гидроразрыв пласта предполагает закачивать воду содержащую песок, это и есть суть всего метода. Частицы песка попадают в микротрещины, расширяя их, до состояния позволяющего вырваться газу. Далее устраиваются извлекающие скважины, и процесс добычи становится намного продуктивнее, так как у газа теперь достаточно путей покинуть глубокие пласты.

Хотя метод гидроразрыва пласта используется с начала 50х годов прошлого столетия, широкая добыча сланцевого газа получила развитие в 2000х годах. Около 90% скважин в США работают благодаря гидроразрыву пласта. Фрекинг несет экономические и политические выгоды стране, в результате увеличения добычи энергоносителя.

Итак, какие же проблемы возникают вследствие применения метода гидроразрыва? Наиболее драматичным и популяризованным эффектом оказалась питьевая вода, насыщенная метаном, основным компонентом природного газа. Насыщенной, как заверяют оппоненты, настолько, что поджигается спичкой. Горящая вода действительно встречается, но насколько явление имеет связь с добычей газа гидроразрывом это другой вопрос. Как многое в науке, ответ довольно не прост.

Для начала вспоминаем, что колодцы питьевой воды не бывают глубокими. Наиболее глубокий колодец в частном дворе не более пары сотен метров. Остальные значительно мельче. Гидроразрыв пласта происходит на километровых глубинах. В большинстве случаев водоносный пласт отделен от сланцевого пласта, претерпевшего гидроразрыв, несколькими скальными формированиями различных типов. В результате большой разницы глубины залегания, водоносный слой и газоносный пласт сообщаются между собой очень незначительно, если сообщаются вообще.

Однако, горящая вода это доказанный факт. Откуда метан попадает в воду, если не из фрекинга? Явление распространено во всем мире и случается там, где колодец вырыт в газоносном районе. Природный газ залегает на разных глубинах, в том числе и на небольшой глубине. Всегда можно ожидать проникание природного газа в колодцы в определенных регионах. Но и добыча газа без гидроразрыва пласта может приводить к попаданию газа в водоносный горизонт.

  • Во первых, изменения давления в пластах могут заставить газ уйти из зоны повышенного давления в зону пониженного давления.
  • Во вторых, плохо закупоренные газовые скважины могут давать утечку и дают утечку газа. Эти плохо закупоренные скважины на совести людей, чья обязанность надежно выполнить свою работу.
  • В третьих, давно заброшенные скважины никто уже не будет обслуживать и закупоривать заново.

Как видим, ни одна из перечисленных проблем не имеет отношения к добыче сланцевого газа методом гидроразрыва пласта.

Когда Комиссия по газу и нефти штата Колорадо (the Colorado Oil & Gas Conservation Commission) расследовала случай горящей воды в колодце, который был широко использован в Gasland, они обнаружили, что вода содержит пузырьки газа и попавший в воду природным путем метан никак не связан с его добычей. Колодец прорыт прямо в газоносный слой. Тем не менее, Gasland демонстрирует явление как следствие добычи сланцевого газа методом гидроразрыва, что не является правдой.

Владелец колодца борется с проблемой. Простейший и эффективнейший метод это проветривание колодца. Метан почти вдвое легче воздуха, вентиляция колодцев эффективно применяется задолго до изобретения фрекинга.
Фактом установленным является то, что метан в воде колодцев чаще встречается в местах, где применяется метод гидроразрыва пласта. В 2011 году широко опубликованное исследование Университета Герцога (Duke University) обнаружило, что когда газовая скважина расположена примерно в километре от колодца, вода в колодце содержит метана в 17 раз выше среднего показателя. Но когда громкие заголовки привлекают внимание к причинно – следственной связи, не вызывает сомнения, что именно так и связаны между собой добыча природного газа и содержание метана в воде колодцев.

В местах месторождений природного газа:
  • Газ обязательно присутствует в воде колодцев.
  • Газодобывающие компании приходят, чтобы добыть газ.

Упомянутое выше исследование говорит, что нет данных о содержании метана в воде колодцев до применения метода гидроразрыва пласта, таким образом нельзя утверждать, что именно появление газодобывающих компаний привело к появлению метана в воде. Исследование говорит, что 13% колодцев имеют повышенное содержание метана в воде и их следует проветривать.

Как же в отношении заявления, что метод гидроразрыва пласта при добыче сланцевого газа предполагает закачивание в грунт сотен токсинов? Да, это правда, частично. И не так как это преподносится. Главный химический элемент при фрекинге это вода, которая составляет 98,5% от состава, нагнетаемого в грунт. Около 1% состава это «расклинивающий агент» различных типов, обычно песок. Тип «расклинивающего агента» выбирается исходя из конкретных геологических условий. Оставшаяся часть процентного содержания раствора изменяется все время и состоит в основном из смазки для бурильного оборудования и составов для подвижности песка. Цель метода гидроразрыва пласта состоит в том, чтобы в образованные давлением воды трещины попали песчинки и удерживали трещины открытыми. Без хороших смазок, поверхностно-активных веществ и суспензий, например гуаровой камеди, песок сбивается в полостях и не достигает цели. В зависимости от типа скальной породы, могут быть в составе этих 0,5% раствора и кислоты, которые воздействуют на водопроницаемость породы. В составе этих же 0,5% можно найти ингибиторы коррозии, которые вводятся для повышения коррозионной стойкости труб, а также бактерицидные препараты против коррозирующих бактерий. Полный список ингредиентов для фрекинга широко доступен в Англоязычном вебе, как того требует закон, и любой интересующийся должен это видеть. Отличная возможность начать, это набрать в поиске «fracking fluid disclosure».

Если вы живете в США и обеспокоены составом жидкости для гидроразрыва пласта в конкретной скважине конкретного района, автор рекомендует сайт FracFocus, который позволит получить исчерпывающую информацию. Включая точное указание типа песка и других используемых компонентов. FracFocus является партнером индустрии газодобычи и Организации Защиты грунтовых вод (Groundwater Protection Council) в сотрудничестве с местными регулирующими органами.

Когда мы говорим об ингибиторах коррозии, бензоле, гуаровой камеди, любой житель региона должен проявить интерес. Итак, кому верить?
  • Активистам движения, утверждающим, что химикаты попадают прямиком в питьевую воду?
  • Или геологам и регулирующим органам, утверждающим, что упомянутые две жидкости нигде не пересекаются?

Обычному человеку довольно сложно понять, кто же говорит правду. Автор спросил своего приятеля из Пенсильвании, работающего геологом в официальной регулирующей организации, который сразу же оценил серьезность вопроса. В Пенсильвании добыча сланцевого газа методом гидроразрыва пласта ведется очень активно. Фильм Gasland однозначно неприемлемый источник информации и газовые компании избегают честного признания рисков дальнейших инвестиций. Обе стороны имеют серьезные мотивы для пропаганды. Консенсусом в вопросе, похоже, может стать беспристрастный источник информации: Агентство по Защите Окружающей Среды США (US Environmental Protection Agency). Если вы ненавидите добывающую компанию Халлибартон (Halliburton), как многие, вы полюбите Агентство Защиты (EPA). EPA опубликовало в сети заявление, направленное в Халлибартон, по причине непредоставления полной информации о технологическом процессе бурения. В ответ Халлибартон публично выпил стакан раствора для фрекинга на одной из конференций отрасли. Если вы хотите получить независимые базовые знания по технологии добычи газа методом гидроразрыва, можно заняться самообразованием прямо сейчас. Источников достаточно, в том числе официальный сайт EPA.
Во время написания данной статьи EPA выполняет грандиозное исследование безопасности грунтовых вод, на которые мог бы повлиять фрекинг. К сожалению, расследование движется с правительственной скоростью и запланировано к докладу на 2014год. Хорошей новостью является то, что EPA должно задокументировать любое подтвержденное загрязнение грунтовых вод в результате применения метода гидроразрыва пласта. Даже упомянутое выше исследование Duke University не обнаружило следов жидкости для фрекинга в колодцах. Однако зафиксировано немало случаев загрязнения воды случайными утечками жидкостей на поверхность грунта. Подобное постоянно случается с каждой компанией, транспортирующей или перекачивающей жидкости.

Несколько государств запретили применение метода гидроразрыва пласта до выяснения всех обстоятельств, но EPA не привело ни единого довода прекратить добычу сланцевого газа фрекингом в США. Как многие другие технологии, фрекинг имеет большое экономическое и политическое значение. Следовательно, вызывает бурные эмоции спорящих сторон. Выбирать вам. Или принять бурное участие, став на защиту одной из сторон. Или изучить, для начала, накопленную на сегодня научную информацию о методе гидроразрыва пласта.
Важность добычи ресурсов, энергонезависимость или доходы газодобывающих компаний не имеют к науке малейшего отношения. Пускай заинтересованные стороны думают об этом. И пускай наука определит степень безопасности фрекинга для общества.

Перевод Владимир Максименко 2013

Гидроразрыв угольного пласта впервые в СССР был осуществлен в 1954 году российским институтом «Промгаз» в рамках работ по подземной газификации Донбасских углей. Сегодня метод гидроразрыва пласта часто применяется государственными и частными добывающими компаниями как метод интенсификации добычи нефти и газа. Например, в настоящее время компания "Роснефть" осуществляет порядка 2 000 операций по гидроразрыву пласта в год. Гидроразрыв пласта активно используют для добычи метана из угольных пластов (80% скважин), газа уплотненных песчаников, сланцевого газа.

При гидроразрыве пласта создается высокопроводимая трещина в целевом пласте, чтобы обеспечить приток добываемого полезного ископаемого к забою скважины. Гидроразрыв используется с целью интенсификации добычных скважин и увеличения приемистости нагнетательных скважин. Говоря простым языком, гидроразрыв пласта — это разрушение горной породы высоким давлением воды.

При помощи гидроразрыва зачастую удается «оживить» простаивающие скважины, где добычные работы традиционными способами не приносят уже результата. Современные методы гидроразрыва применяются при разработке новых нефтяных пластов, имеющих низкие получаемые дебиты, что делает их разработку традиционными способами нерентабельной. В последнее время гидроразрыв пласта стали применять для добычи сланцевого газа и газа уплотненных песчаников.

Гидроразрыв пласта при добыче нефти заключается в подаче в нефтяную скважину под высоким давлением жидкости разрыва (гель, вода, кислота). При этом давление, создаваемое при закачке жидкости, должно быть выше давления разрыва нефтеносного пласта. В терригенных коллекторах для поддержания открытой трещины используется проплант (расклинивающий агент), в карбонатных коллекторах — кислота или проплант.

При добыче нетрадиционного газа гидроразрыв пласта соединияет поры плотных пород и обеспечивает возможность высвобождения природного газа. При этом в скважину закачивается специальная смесь, на 99% состоящая из воды и песка, и на 1% - из химических реагентов (хлористый калий, гуаровая смола, дезинфицирующие средства, средства для предотвращения образования отложений).

Первый гидроразрыв пласта был выполнен в США в 1947 году компанией Halliburton, которая в качестве жидкости разрыва применила техническую воду, а в качестве расклинивающего агента — речной песок.

В настоящее время компания Шелл методом гидроразрыва пласта собирается добывать в промышленных объемах сланцевый газ на Юзовской газоносной площади, расположенной на территории Донецкой и Харьковской области в Украине.

Этот контракт был заключен украинским правительством с целью решения проблемы энергоносителей, которая вот уже несколько последних лет остро стоит на повестке дня, поскольку цена на российский газ превышает 400 долларов за 1000 м3.

Тем не менее, как только будущий проект начал обретать свои очертания, сразу же появились ярые его противники — в обществе начали распространяться слухи о будущих катастрофах, которые вызовет добыча сланцевого газа, технических трудностях, дороговизне добычных работ, малой перспективности и неэффективности. Получается парадоксальная ситуация: с одной стороны Украина пытается решить свои газовые проблемы, с другой — общественное мнение настраивается против такого решения.

Аналогию можно провести с Джном Юзом, именем которого названа газоносная площадь. Тогда, полтора столетия назад перед царской Россией стояла дилемма: поверить бельгийцу и положиться на его гений или же поверить желтой прессе, обвинявшей того во всех смертных грехах. Чиновники выбрали первый вариант, и как показала история, не прогадали - к 1917 году Новороссийское общество в Юзовке давало львиную долю чугуна, стали, угля и кокса в стране.

Несколько прояснил нынешнюю ситуацию с добычей сланцевого газа на Донбассе декан горно-геологического факультета Донецкого Национального технического университета Артур Аркадьевич Каракозов.

Авторитетный специалист рассказал, что недавно компанией Шелл при содействии Британского совета провела на базе университета в Донецке семинар по разъяснению нюансов будущих работ по добыче сланцевого газа.

Подобная ситуация была и в Великобритании, когда общественное мнение настраивалось против новых технологий. Раньше сланцевый газ добывался примитивными методами - бурилась обычная вертикальная скважина, вокруг которой делался гидроразрыв пласта. Такая технология давала обработать только небольшую часть газосодержащего пласта. Чтобы увеличить газоотдачу, рядом бурились многочисленные скважины, что навсегда убивало экологию в данной местности.

С развитием технологий геологи научились изначально вертикальную скважину искривлять по мере ее бурения вглубь. Современные технологии позволяют на определенной глубине первоначально вертикальную скважину переводить в полностью горизонтальную, что дает возможность охватывать большой объем газоносных пород. При гидроразрыве пласта такая скважина дает гораздо больше газа, чем традиционная вертикальная. Следующим шагом было использование технологий кустового бурения, когда из одной вертикальной скважины на глубине делается несколько стволов с горизонтальными участками. Такая густо разветвленная под землей скважина заменяет десятки традиционных вертикальных скважин. Подобные технологии нефтяниками применяются уже более 30 лет. Другое дело, что в бывшем СССР, да и во всём мире, вопрос о сланцевом газе так остро не стоял, поскольку нефти и традиционного газа было в избытке.

На данный момент, увы, газа и нефти становится все меньше, а добывать их становится все труднее, а значит, затратнее. Поэтому, в сложившейся ситуации стало экономически выгодно применить разработанные технологии для добычи сланцевого газа. Но, поскольку его добыча имеет свои особенности, то появились новые технические средства, материалы, телеметрические системы контроля и управления бурением, позволившие значительно повысить эффективность буровых работ.

2024 logonames.ru. Финансовые советы - Портал полезных знаний.